期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assessment of molecular markers and marker-assisted selection for drought tolerance in barley(Hordeum vulgare L.)
1
作者 Akmaral Baidyussen Gulmira Khassanova +11 位作者 Maral Utebayev Satyvaldy Jatayev Rystay Kushanova Sholpan Khalbayeva Aigul Amangeldiyeva Raushan Yerzhebayeva KulpashBulatova Carly Schramm Peter Anderson Colin L.D.Jenkins Kathleen LSoole yuri shavrukov 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期20-38,共19页
This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candi... This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors. 展开更多
关键词 BARLEY candidate genes drought tolerance gene verification via expression grain yield marker-assisted selection(MAS) molecular markers quantitative trait loci(QTLs) strategy for MAS
下载PDF
Gene editing applications to modulate crop flowering time and seed dormancy
2
作者 Olena Kishchenko Yuzhen Zhou +2 位作者 Satyvaldy Jatayev yuri shavrukov Nikolai Borisjuk 《aBIOTECH》 2020年第4期233-245,共13页
Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits,from disease resistance to grain quality.Now,emerging research has used CRISPR/Cas9 and other gene editing technologies ... Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits,from disease resistance to grain quality.Now,emerging research has used CRISPR/Cas9 and other gene editing technologies to target plant reproduction,including major areas such as flowering time and seed dormancy.Traits related to these areas have important implications for agriculture,as manipulation of flowering time has multiple applications,including tailoring crops for regional adaptation and improving yield.Moreover,understanding seed dormancy will enable approaches to improve germination upon planting and prevent pre-harvest sprouting.Here,we summarize trends and recent advances in using gene editing to gain a better understanding of plant reproduction and apply the resulting information for crop improvement. 展开更多
关键词 Genome editing CRISPR/Cas9 Flowering time FLORIGEN Seed dormancy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部