Objective Alzheimer's disease(AD)is the most common cause of dementia.The pathophysiology of the disease mostly remains unearthed,thereby challenging drug development for AD.This study aims to screen high throughp...Objective Alzheimer's disease(AD)is the most common cause of dementia.The pathophysiology of the disease mostly remains unearthed,thereby challenging drug development for AD.This study aims to screen high throughput gene expression data using weighted co-expression network analysis(WGCNA)to explore the potential therapeutic targets.Methods The dataset of GSE36980 was obtained from the Gene Expression Omnibus(GEO)database.Normalization,quality control,filtration,and soft-threshold calculation were carried out before clustering the co-expressed genes into different modules.Furthermore,the correlation coefiidents between the modules and clinical traits were computed to identify the key modules.Gene ontology and pathway enrichment analyses were performed on the key module genes.The STRING database was used to construct the protein-protein interaction(PPI)networks,which were further analyzed by Cytoscape app(MCODE).Finally,validation of hub genes was conducted by external GEO datasets of GSE 1297 and GSE 28146.Results Co-expressed genes were clustered into 27 modules,among which 6 modules were identified as the key module relating to AD occurrence.These key modules are primarily involved in chemical synaptic transmission(G0:0007268),the tricarboxylic acid(TCA)cycle and respiratory electron transport(R-HSA-1428517).WDR47,OXCT1,C3orfl4,ATP6V1A,SLC25A14,NAPB were found as the hub genes and their expression were validated by external datasets.Conclusions Through modules co-expression network analyses and PPI network analyses,we identified the hub genes of AD,including WDR47,0XCT1,C3orfl4i ATP6V1A,SLC25A14 and NAPB.Among them,three hub genes(ATP6V1A,SLC25A14,OXCT1)might contribute to AD pathogenesis through pathway of TCA cycle.展开更多
Particulate nitrate,a key component of fine particles,forms through the intricate gas-to-particle conversion process.This process is regulated by the gas-to-particle conversion coefficient of nitrate(ε(NO_(3)^(-))).T...Particulate nitrate,a key component of fine particles,forms through the intricate gas-to-particle conversion process.This process is regulated by the gas-to-particle conversion coefficient of nitrate(ε(NO_(3)^(-))).The mechanism betweenε(NO_(3)^(-))and its drivers is highly complex and nonlinear,and can be characterized by machine learning methods.However,conventional machine learning often yields results that lack clear physical meaning and may even contradict established physical/chemical mechanisms due to the influence of ambient factors.It urgently needs an alternative approach that possesses transparent physical interpretations and provides deeper insights into the impact ofε(NO_(3)^(-)).Here we introduce a supervised machine learning approachdthe multilevel nested random forest guided by theory approaches.Our approach robustly identifies NH4 t,SO_(4)^(2-),and temperature as pivotal drivers forε(NO_(3)^(-)).Notably,substantial disparities exist between the outcomes of traditional random forest analysis and the anticipated actual results.Furthermore,our approach underscores the significance of NH4 t during both daytime(30%)and nighttime(40%)periods,while appropriately downplaying the influence of some less relevant drivers in comparison to conventional random forest analysis.This research underscores the transformative potential of integrating domain knowledge with machine learning in atmospheric studies.展开更多
Unmanned aerial vehicle (UAV)-based edge computing is an emerging technology that provides fast task processing for a wider area. To address the issues of limited computation resource of a single UAV and finite commun...Unmanned aerial vehicle (UAV)-based edge computing is an emerging technology that provides fast task processing for a wider area. To address the issues of limited computation resource of a single UAV and finite communication resource in multi-UAV networks, this paper joints consideration of task offloading and wireless channel allocation on a collaborative multi-UAV computing network, where a high altitude platform station (HAPS)is adopted as the relay device for communication between UAV clusters consisting of UAV cluster heads (ch-UAVs) and mission UAVs (m-UAVs). We propose an algorithm, jointing task offloading and wireless channel allocation to maximize the average service success rate (ASSR)of a period time. In particular,the simulated annealing(SA)algorithm with random perturbations is used for optimal channel allocation,aiming to reduce interference and minimize transmission delay.A multi-agent deep deterministic policy gradient (MADDPG) is proposed to get the best task offloading strategy. Simulation results demonstrate the effectiveness of the SA algorithm in channel allocation. Meanwhile,when jointly considering computation and channel resources,the proposed scheme effectively enhances the ASSR in comparison to other benchmark algorithms.展开更多
Seaweed polysaccharides with abundantly renewable sources and charming properties have attracted arising attention.Alginate,carrageenan and agar with the largest are the most predominant species of common seaweed poly...Seaweed polysaccharides with abundantly renewable sources and charming properties have attracted arising attention.Alginate,carrageenan and agar with the largest are the most predominant species of common seaweed polysaccharides.This review will first provide a comprehensive overview of general information on seaweed polysaccharides regarding solubility,multilevel structure,viscoelasticity,and gelation.Then we summarize preparation methods of seaweed polysaccharides fibers including wet-spinning technique,electrospinning technique and microfluidic spinning.The applications of seaweed polysaccha-rides fibers,based on many excellent inherent properties,including biocompatibility,suitable microstruc-ture,nontoxicity,potential bioactivity,good intrinsic flame retardancy and thermal stability,are described in detail.展开更多
Developing sustainable and powerful heterogeneous catalytic systems to convert sulfides into high-value sulfoxide products has become a particularly appealing field and an arduous challenge.In this work,two porous pol...Developing sustainable and powerful heterogeneous catalytic systems to convert sulfides into high-value sulfoxide products has become a particularly appealing field and an arduous challenge.In this work,two porous polyoxometalate-pillared metal-organic frameworks,formulated as H_(3n)[Cu_(3)(pidc)_(2)(H_(2)O)_(2.5)]_(2)[PW_(12)O_(40)]_n·x H_(2)O (n=1.5,x=6 for 1,n=1,x=12 for 2;and H_(3)pidc=2-(3-pyridinyl)-1H-imidazole-4,5-dicarboxylic acid),were consciously manufacture and employed for heterogeneously catalyzed sulfide-sulfoxide transformation.Structural analysis shows that 1 and 2 exhibit similar porous frameworks with nearly identical two-dimensional metal-organic layers further pillared by tetradentate POM ligands with different coordination modes,which also result in the porosity of 1 being almost twice that of 2.In catalyzing the conversion of methyl phenyl sulfide (MPS) to methyl phenyl sulfoxide (MPSO),1 can convert nearly 100%of MPS into MPSO within 30 min,while 2 achieved the similar results requires 50 min.The higher activity of 1 may be attributed to its larger channel that can provide more active sites and more efficient mass transfer process.Systematic structure-activity analyses and mechanistic studies revealed dual-reaction pathways driven by POM sites and metal sites assisted by the structural microenvironment.展开更多
The cross-sections of the 127I(n,2n)126I and 133Cs(n,2n)132Cs reactions at neutron energies of 13.83±0.05,14.33±0.10,and 14.79±0.10 MeV were measured relative to the 93Nb(n,2n)92mNb reaction using the a...The cross-sections of the 127I(n,2n)126I and 133Cs(n,2n)132Cs reactions at neutron energies of 13.83±0.05,14.33±0.10,and 14.79±0.10 MeV were measured relative to the 93Nb(n,2n)92mNb reaction using the activation technique in combination with off-lineγ-ray spectrometry.A neutron beam was generated from the T(d,n)4He reaction using the K-400 neutron generator at the China Academy of Engineering Physics.Considering the correlations between different attributes,detailed uncertainty propagation was performed using covariance analysis,and the cross-sections were reported with their uncertainties and correlation matrix.The uncertainty of the measurement cross-sections ranged from 4.84 to 5.90%,which is lower than previous experimental data.Furthermore,the theoretical excitation functions of the 127I(n,2n)126I and 133Cs(n,2n)132Cs reactions were calculated using the TALYS-1.95 and EMPIRE-3.2.3 codes.Then,the experimentally determined cross-sections were analyzed by comparing them with literature data available in the EXFOR database and evaluated nuclear data in the ENDF/B-VIII.0,JEFF-3.3,JENDL-5,BROND-3.1,CENDL-3.2,and TENDL-2021 databases.Compared with the values previously reported in the 13.8-14.8 MeV energy region,the precision of the results obtained in this study was greatly improved.The current experimental results with thorough uncertainties and covariance information are critical for verifying the reliability of the theoretical model and improving the quality of the nuclear database.展开更多
High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH...High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH_(4)NO_(3))formation includes two processes,the diffusion process(molecule of ammonia and nitric acid move from gas phase to liquid phase)and the ionization process(subsequent dissociation to form ions).In this study,we discuss the impact of meteorological factors,emission sources,and gaseous precursors on NH4NO3 formation based on thermodynamic theory,and identify the dominant factors during clean periods and haze periods.Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution.The dust source is dominant emission source in clean periods;while a combination of coal combustion and vehicle exhaust sources is more important in haze periods.And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate.The findings of this work inform the design of effective strategies to control particulate matter pollution.展开更多
The fission yield data in the 14 MeV energy neutron induced fission of^(238)U play an important role in decay heat calculations and generation-Ⅳ reactor designs.In order to accurately measure fission product yields(F...The fission yield data in the 14 MeV energy neutron induced fission of^(238)U play an important role in decay heat calculations and generation-Ⅳ reactor designs.In order to accurately measure fission product yields(FPYs)of^(238)U induced by 14 MeV neutrons,the cumulative yields of fission products ranging from^(92)Sr to^(147)Nd in the^(239)U(n,f) reaction with a 14.7 MeV neutron were determined using an off-line γ-ray spectrometric technique.The14.7 MeV quasi-monoenergetic neutron beam was provided by the K-400 D-T neutron generator at China Academy of Engineering Physics(CAEP).Fission products were measured by a low background high purity germanium gamma spectrometer.The neutron flux was obtained from the^(93)Nb(n.2n)^(92m)Nb reaction,and the mean neutron energy was calculated using the cross-section ratios for the^(90)Zr(n,2n)^(89)Zr and^(93)Nb(n,2n)^(92m)Nb reactions.With a series of corrections,high precision cumulative yields of 20 fission products were obtained.Our FPYs for the^(238)U(n,f) reaction at 14.7 MeV were compared with the existing experimental nuclear reaction data and evaluated nuclear data,respectively.The results will be helpful in the design of a generation-Ⅳ reactor and the construction of evaluated fission yield databases.展开更多
The isomeric ratio of^(184m,g)Re and the half-life of^(184g)Re were measured in the ^(185)Re(n,2n)^(184)Re reaction at 14.8 MeV,and the uncertainty was discussed in detail.The measurements were performed using the act...The isomeric ratio of^(184m,g)Re and the half-life of^(184g)Re were measured in the ^(185)Re(n,2n)^(184)Re reaction at 14.8 MeV,and the uncertainty was discussed in detail.The measurements were performed using the activation method implemented for a rhenium sample using the K-400 neutron generator at the Chinese Academy of Engineering Physics(CAEP).Isomeric state and ground state nuclei of ^(184)Re were identified by their γ-ray spectra.To eliminate the effect of the γ-ray emitted from the isomer on the counting of the ground state characteristic peaks,the isomeric ratio of^(184m,g)Re was calculated to be 0.29±0.11 according to the neutron activation cross-section formula.This result is consistent with previous data within the uncertainty and can be used to determine parameters that characterize the dependence of the level density on the excitation energy and angular momentum.Through exponential function fitting and a detailed discussion of the uncertainty evaluation,the half-life of^(184g)Re was determined as 35.43±0.16 d,which is consistent with the currently recommended value;however,the uncertainty assessment of the latter was barely documented.In addition,this study indicates that the half-life of the ground state can be obtained by eliminating the contamination of γ-rays emitted from the isomer,which provides the possibility of determining the half-lives of nuclides containing isomers.展开更多
Purpose Due to the few reports on the^(91)Sr half-life previously,the accuracy and uncertainty of the results are difficult to meet the requirements such as calculating the cross section and thefission yields of 235U,23...Purpose Due to the few reports on the^(91)Sr half-life previously,the accuracy and uncertainty of the results are difficult to meet the requirements such as calculating the cross section and thefission yields of 235U,238U,and 239Pu.To solve the discrepancy of^(91)Sr half-life in existing experimental data,the half-life of^(91)Sr was measured in this work,and the uncertainty was discussed in detail.Method The measurements were performed by the activation method implemented for the uranium sample using the K-400 neutron generator at the Chinese Academy of Engineering Physics(CAEP).The half-life of^(91)Sr was measured byγ-ray spectrometry using the high-resolution High Purity Germanium(HPGe)Detector.Results Through exponential functionfitting and a detailed discussion of the uncertainty evaluation,the half-life of^(91)Sr in the present work was determined to be 9.65±0.30 h,which was consistent with the values reported previously and the uncertainty was reduced greatly,however,the uncertainty assessment of the latter was barely documented.Conclusions In this work,a more accurate measurement of the^(91)Sr half-life is provided,as well as the uncertainty is discussed in detail.This result will provide essential information for applications using an activation method,such as the calculation offission yields of 235U,238U,and 239Pu.展开更多
基金Fund supported by the National Natural Science Foundation of China(81460598 and 81660644)the Natural Science Foundation of Jiangsu Province(BK20170267)Guangxi Special Fund for the First-Class Discipline Construction Project(05019038).
文摘Objective Alzheimer's disease(AD)is the most common cause of dementia.The pathophysiology of the disease mostly remains unearthed,thereby challenging drug development for AD.This study aims to screen high throughput gene expression data using weighted co-expression network analysis(WGCNA)to explore the potential therapeutic targets.Methods The dataset of GSE36980 was obtained from the Gene Expression Omnibus(GEO)database.Normalization,quality control,filtration,and soft-threshold calculation were carried out before clustering the co-expressed genes into different modules.Furthermore,the correlation coefiidents between the modules and clinical traits were computed to identify the key modules.Gene ontology and pathway enrichment analyses were performed on the key module genes.The STRING database was used to construct the protein-protein interaction(PPI)networks,which were further analyzed by Cytoscape app(MCODE).Finally,validation of hub genes was conducted by external GEO datasets of GSE 1297 and GSE 28146.Results Co-expressed genes were clustered into 27 modules,among which 6 modules were identified as the key module relating to AD occurrence.These key modules are primarily involved in chemical synaptic transmission(G0:0007268),the tricarboxylic acid(TCA)cycle and respiratory electron transport(R-HSA-1428517).WDR47,OXCT1,C3orfl4,ATP6V1A,SLC25A14,NAPB were found as the hub genes and their expression were validated by external datasets.Conclusions Through modules co-expression network analyses and PPI network analyses,we identified the hub genes of AD,including WDR47,0XCT1,C3orfl4i ATP6V1A,SLC25A14 and NAPB.Among them,three hub genes(ATP6V1A,SLC25A14,OXCT1)might contribute to AD pathogenesis through pathway of TCA cycle.
基金supported by the National Natural Science Foundation of China(42077191)the National Key Research and Development Program of China(2022YFC3703400)+1 种基金the Blue Sky Foundation,Tianjin Science and Technology Plan Project(18PTZWHZ00120)Fundamental Research Funds for the Central Universities(63213072 and 63213074).
文摘Particulate nitrate,a key component of fine particles,forms through the intricate gas-to-particle conversion process.This process is regulated by the gas-to-particle conversion coefficient of nitrate(ε(NO_(3)^(-))).The mechanism betweenε(NO_(3)^(-))and its drivers is highly complex and nonlinear,and can be characterized by machine learning methods.However,conventional machine learning often yields results that lack clear physical meaning and may even contradict established physical/chemical mechanisms due to the influence of ambient factors.It urgently needs an alternative approach that possesses transparent physical interpretations and provides deeper insights into the impact ofε(NO_(3)^(-)).Here we introduce a supervised machine learning approachdthe multilevel nested random forest guided by theory approaches.Our approach robustly identifies NH4 t,SO_(4)^(2-),and temperature as pivotal drivers forε(NO_(3)^(-)).Notably,substantial disparities exist between the outcomes of traditional random forest analysis and the anticipated actual results.Furthermore,our approach underscores the significance of NH4 t during both daytime(30%)and nighttime(40%)periods,while appropriately downplaying the influence of some less relevant drivers in comparison to conventional random forest analysis.This research underscores the transformative potential of integrating domain knowledge with machine learning in atmospheric studies.
基金supported in part by the National Natural Science Foundation of China under Grants 62341104,62201085,62325108,and 62341131.
文摘Unmanned aerial vehicle (UAV)-based edge computing is an emerging technology that provides fast task processing for a wider area. To address the issues of limited computation resource of a single UAV and finite communication resource in multi-UAV networks, this paper joints consideration of task offloading and wireless channel allocation on a collaborative multi-UAV computing network, where a high altitude platform station (HAPS)is adopted as the relay device for communication between UAV clusters consisting of UAV cluster heads (ch-UAVs) and mission UAVs (m-UAVs). We propose an algorithm, jointing task offloading and wireless channel allocation to maximize the average service success rate (ASSR)of a period time. In particular,the simulated annealing(SA)algorithm with random perturbations is used for optimal channel allocation,aiming to reduce interference and minimize transmission delay.A multi-agent deep deterministic policy gradient (MADDPG) is proposed to get the best task offloading strategy. Simulation results demonstrate the effectiveness of the SA algorithm in channel allocation. Meanwhile,when jointly considering computation and channel resources,the proposed scheme effectively enhances the ASSR in comparison to other benchmark algorithms.
基金supported by the National Natu-ral Science Foundation of China(Nos.52003132,51403113 and 52072193)and the Shandong Provincial Natural Science Foundation(Nos.ZR2021JQ16,ZR2019YQ19 and ZR2019BEM018)the Project of Shandong Province Higher Educational Science and Technology Program(No.2019KJA026)the Shandong Provincial College Stu-dents'Innovative Entrepreneurial Training(No.S202111065214).
文摘Seaweed polysaccharides with abundantly renewable sources and charming properties have attracted arising attention.Alginate,carrageenan and agar with the largest are the most predominant species of common seaweed polysaccharides.This review will first provide a comprehensive overview of general information on seaweed polysaccharides regarding solubility,multilevel structure,viscoelasticity,and gelation.Then we summarize preparation methods of seaweed polysaccharides fibers including wet-spinning technique,electrospinning technique and microfluidic spinning.The applications of seaweed polysaccha-rides fibers,based on many excellent inherent properties,including biocompatibility,suitable microstruc-ture,nontoxicity,potential bioactivity,good intrinsic flame retardancy and thermal stability,are described in detail.
基金financially supported by the National Natural Science Foundation of China (Nos. 21371027, 20901013)Natural Science Foundation of Liaoning Province (No. 2015020232)Fundamental Research Funds for the Central Universities (Nos. DUT19LK01, DUT15LN18)。
文摘Developing sustainable and powerful heterogeneous catalytic systems to convert sulfides into high-value sulfoxide products has become a particularly appealing field and an arduous challenge.In this work,two porous polyoxometalate-pillared metal-organic frameworks,formulated as H_(3n)[Cu_(3)(pidc)_(2)(H_(2)O)_(2.5)]_(2)[PW_(12)O_(40)]_n·x H_(2)O (n=1.5,x=6 for 1,n=1,x=12 for 2;and H_(3)pidc=2-(3-pyridinyl)-1H-imidazole-4,5-dicarboxylic acid),were consciously manufacture and employed for heterogeneously catalyzed sulfide-sulfoxide transformation.Structural analysis shows that 1 and 2 exhibit similar porous frameworks with nearly identical two-dimensional metal-organic layers further pillared by tetradentate POM ligands with different coordination modes,which also result in the porosity of 1 being almost twice that of 2.In catalyzing the conversion of methyl phenyl sulfide (MPS) to methyl phenyl sulfoxide (MPSO),1 can convert nearly 100%of MPS into MPSO within 30 min,while 2 achieved the similar results requires 50 min.The higher activity of 1 may be attributed to its larger channel that can provide more active sites and more efficient mass transfer process.Systematic structure-activity analyses and mechanistic studies revealed dual-reaction pathways driven by POM sites and metal sites assisted by the structural microenvironment.
基金Supported by the Key Laboratory of Nuclear Data Foundation(JCKY2022201C151)the National Natural Science Foundation of China(11975113).
文摘The cross-sections of the 127I(n,2n)126I and 133Cs(n,2n)132Cs reactions at neutron energies of 13.83±0.05,14.33±0.10,and 14.79±0.10 MeV were measured relative to the 93Nb(n,2n)92mNb reaction using the activation technique in combination with off-lineγ-ray spectrometry.A neutron beam was generated from the T(d,n)4He reaction using the K-400 neutron generator at the China Academy of Engineering Physics.Considering the correlations between different attributes,detailed uncertainty propagation was performed using covariance analysis,and the cross-sections were reported with their uncertainties and correlation matrix.The uncertainty of the measurement cross-sections ranged from 4.84 to 5.90%,which is lower than previous experimental data.Furthermore,the theoretical excitation functions of the 127I(n,2n)126I and 133Cs(n,2n)132Cs reactions were calculated using the TALYS-1.95 and EMPIRE-3.2.3 codes.Then,the experimentally determined cross-sections were analyzed by comparing them with literature data available in the EXFOR database and evaluated nuclear data in the ENDF/B-VIII.0,JEFF-3.3,JENDL-5,BROND-3.1,CENDL-3.2,and TENDL-2021 databases.Compared with the values previously reported in the 13.8-14.8 MeV energy region,the precision of the results obtained in this study was greatly improved.The current experimental results with thorough uncertainties and covariance information are critical for verifying the reliability of the theoretical model and improving the quality of the nuclear database.
基金the National Natural Science Foundation of China(No.42077191)the Fundamental Research Funds for the Central Universities(Nos.63213072,63213074)+1 种基金the GDAS’Project of Science and Technology Development(No.2021GDASYL-20210103058)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012165),The Blue Sky Foundation.
文摘High levels of fine particulate matter(PM_(2.5))is linked to poor air quality and premature deaths,so haze pollution deserves the attention of the world.As abundant inorganic components in PM_(2.5),ammonium nitrate(NH_(4)NO_(3))formation includes two processes,the diffusion process(molecule of ammonia and nitric acid move from gas phase to liquid phase)and the ionization process(subsequent dissociation to form ions).In this study,we discuss the impact of meteorological factors,emission sources,and gaseous precursors on NH4NO3 formation based on thermodynamic theory,and identify the dominant factors during clean periods and haze periods.Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution.The dust source is dominant emission source in clean periods;while a combination of coal combustion and vehicle exhaust sources is more important in haze periods.And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate.The findings of this work inform the design of effective strategies to control particulate matter pollution.
基金Supported by the National Natural Science Foundation of China (11975113)。
文摘The fission yield data in the 14 MeV energy neutron induced fission of^(238)U play an important role in decay heat calculations and generation-Ⅳ reactor designs.In order to accurately measure fission product yields(FPYs)of^(238)U induced by 14 MeV neutrons,the cumulative yields of fission products ranging from^(92)Sr to^(147)Nd in the^(239)U(n,f) reaction with a 14.7 MeV neutron were determined using an off-line γ-ray spectrometric technique.The14.7 MeV quasi-monoenergetic neutron beam was provided by the K-400 D-T neutron generator at China Academy of Engineering Physics(CAEP).Fission products were measured by a low background high purity germanium gamma spectrometer.The neutron flux was obtained from the^(93)Nb(n.2n)^(92m)Nb reaction,and the mean neutron energy was calculated using the cross-section ratios for the^(90)Zr(n,2n)^(89)Zr and^(93)Nb(n,2n)^(92m)Nb reactions.With a series of corrections,high precision cumulative yields of 20 fission products were obtained.Our FPYs for the^(238)U(n,f) reaction at 14.7 MeV were compared with the existing experimental nuclear reaction data and evaluated nuclear data,respectively.The results will be helpful in the design of a generation-Ⅳ reactor and the construction of evaluated fission yield databases.
基金Supported by the National Natural Science Foundation of China(11975113)。
文摘The isomeric ratio of^(184m,g)Re and the half-life of^(184g)Re were measured in the ^(185)Re(n,2n)^(184)Re reaction at 14.8 MeV,and the uncertainty was discussed in detail.The measurements were performed using the activation method implemented for a rhenium sample using the K-400 neutron generator at the Chinese Academy of Engineering Physics(CAEP).Isomeric state and ground state nuclei of ^(184)Re were identified by their γ-ray spectra.To eliminate the effect of the γ-ray emitted from the isomer on the counting of the ground state characteristic peaks,the isomeric ratio of^(184m,g)Re was calculated to be 0.29±0.11 according to the neutron activation cross-section formula.This result is consistent with previous data within the uncertainty and can be used to determine parameters that characterize the dependence of the level density on the excitation energy and angular momentum.Through exponential function fitting and a detailed discussion of the uncertainty evaluation,the half-life of^(184g)Re was determined as 35.43±0.16 d,which is consistent with the currently recommended value;however,the uncertainty assessment of the latter was barely documented.In addition,this study indicates that the half-life of the ground state can be obtained by eliminating the contamination of γ-rays emitted from the isomer,which provides the possibility of determining the half-lives of nuclides containing isomers.
基金supported by the National Natural Science Foundation of China(Grant No.11975113).
文摘Purpose Due to the few reports on the^(91)Sr half-life previously,the accuracy and uncertainty of the results are difficult to meet the requirements such as calculating the cross section and thefission yields of 235U,238U,and 239Pu.To solve the discrepancy of^(91)Sr half-life in existing experimental data,the half-life of^(91)Sr was measured in this work,and the uncertainty was discussed in detail.Method The measurements were performed by the activation method implemented for the uranium sample using the K-400 neutron generator at the Chinese Academy of Engineering Physics(CAEP).The half-life of^(91)Sr was measured byγ-ray spectrometry using the high-resolution High Purity Germanium(HPGe)Detector.Results Through exponential functionfitting and a detailed discussion of the uncertainty evaluation,the half-life of^(91)Sr in the present work was determined to be 9.65±0.30 h,which was consistent with the values reported previously and the uncertainty was reduced greatly,however,the uncertainty assessment of the latter was barely documented.Conclusions In this work,a more accurate measurement of the^(91)Sr half-life is provided,as well as the uncertainty is discussed in detail.This result will provide essential information for applications using an activation method,such as the calculation offission yields of 235U,238U,and 239Pu.