A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate t...A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively.展开更多
A Z-pinch dynamic hohlraum can create the high-temperature radiation field required by indirect-drive inertial confinement fusion.A dynamic hohlraum with peak radiation temperature over 300 eV can be obtained with a&g...A Z-pinch dynamic hohlraum can create the high-temperature radiation field required by indirect-drive inertial confinement fusion.A dynamic hohlraum with peak radiation temperature over 300 eV can be obtained with a>50 MA Z-pinch driver according to the scaling law of dynamic hohlraum radiation temperature vs drive current.Based on a uniform 300 eV radiation temperature profile with a width of 10 ns,three double-shell capsules with radii of 2,2.5,and 3 mm are proposed,and the corresponding fusion yields from a one-dimensional calculation are 28.8,56.1,and 101.6 MJ.The implosion dynamics of the 2.5 mm-radius capsule is investigated in detail.At ignition,the areal density of the fuel is about 0.53 g/cm^(2),the fuel pressure is about 80 Gbar,and the central ion temperature is about 4.5 keV,according to the one-dimensional simulation.A two-dimensional simulation indicates that the double-shell capsule can implode nearly spherically when driven by the radiation field of a Z-pinch dynamic hohlraum.The sensitivities of the fusion performance to the radiation temperature profiles and to deviations in the capsule parameter are investigated through one-dimensional simulation,and it is found that the capsule fusion yields are rather stable in a quite large parameter space.A one-dimensional simulation of a capsule embedded in 50 mg/cm^(3)CH foam indicates that the capsule performance does not change greatly in the mimicked environment of a Z-pinch dynamic hohlraum.The double-shell capsules designed here are also applicable to laser indirect-drive inertial fusion,if a laser facility can produce a uniform 300 eV radiation field and sustain it for about 10 ns.展开更多
Small-angle X-ray scattering(SAXS)using synchrotron radiation as X-ray source has been employed to charactcizc the microscopic structrure of organo-modified mesoporous molecular sieves(organo-MSU-X)prepared by a one-p...Small-angle X-ray scattering(SAXS)using synchrotron radiation as X-ray source has been employed to charactcizc the microscopic structrure of organo-modified mesoporous molecular sieves(organo-MSU-X)prepared by a one-pot template-directed synthesis.It is shown that the SAXS profile is hardly constant with Porod’s law showing a negative slope,i.e.,negative deviation.This suggests that there is diffuse interfacial layer located between the pores and the matrix.This suggests that the organic groups remain covalently linked to the matrix,as indicated by ^29SiCP MAS NMR and FT-IR.The average thickness of the interfacial layer was found to be about 1nm for each of the three samples with different kinds and the same amounts(20? of organic groups.This kind of material has also been proved to possess both surface and mass fractal structure of the amophous porous silica materials.2001 Elsevier Science B.V.All rights reserved.展开更多
To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ...To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ADUGKS is designed from the discrete characteristic solution to the Boltzmann-BGK equation,which contains the initial distribution function and the local equilibrium state.The initial distribution function contributes to the calculation of free streaming fluxes and the local equilibrium state contributes to the calculation of equilibrium fluxes.When the contribution of the initial distribution function is negative,the local flow field can be regarded as the continuous flow and the Navier-Stokes(N-S)equations can be used to obtain the solution directly.Otherwise,the discrete distribution functions should be updated by the Boltzmann equation to capture the rarefaction effect.Given this,in the ADUGKS,the computational domain is divided into the DUGKS cell and the N-S cell based on the contribu-tion of the initial distribution function to the calculation of free streaming fluxes.In the N-S cell,the local flow field is evolved by solving the N-S equations,while in the DUGKS cell,both the discrete velocity Boltzmann equation and the correspond-ing macroscopic governing equations are solved by a modified DUGKS.Since more and more cells turn into the N-S cell with the decrease of the Knudsen number,a significant acceleration can be achieved for the ADUGKS in the continuum flow regime as compared with the DUGKS.展开更多
1 Results Micro-porous polymer electrolytes(MPEs), which almost obtained by the conventional methods of phase inversion process or immersion precipitation method, have significant advantages such as high ionic conduct...1 Results Micro-porous polymer electrolytes(MPEs), which almost obtained by the conventional methods of phase inversion process or immersion precipitation method, have significant advantages such as high ionic conductivity and excellent mechanical properties[1].In our work, micro-porous structure is obtained by adding SnO2 nanorods usually used as gas senor materials into the polymer matrix, which proves a new way to prepare MPEs.SnO2 nanorods were synthesized by microemulsion hydrothermal method[2]. Th...展开更多
Two low-lying unbound states in ^(16)C are investigated by deuteron inelastic scattering in inverse kinematics.Besides the 2^(-) state at 5.45 MeV previously measured in a 1n knockout reaction,a new resonant state at ...Two low-lying unbound states in ^(16)C are investigated by deuteron inelastic scattering in inverse kinematics.Besides the 2^(-) state at 5.45 MeV previously measured in a 1n knockout reaction,a new resonant state at 6.89 MeV is observed for the first time.The inelastic scattering angular distributions of these two states are well reproduced by the distorted-wave Born approximation(DWBA)calculation with an l=1 excitation.In addition,the spinparities of the unbound states are discussed and tentatively assigned based on shell model calculations using the modified YSOX interaction.展开更多
文摘A new reliable thermal simulation system for studying solidification of heavy section ductile iron has been developed using computer feedback control and artificial intelligent methods. Results of idle test indicate that the temperature in the system responses exactly to the inputted control data and the temperature control error is less than ±0.5%. It is convenient to simulate solidification of heavy section ductile iron using this new system. Results of thermal simulation experiments show that the differences in nodularity and number of graphite nodule per unit area in the thermal simulation specimen and the actual heavy section block is less than 5% and 10%, respectively.
基金the Z-FFR(Z-Pinch Driven Fusion-Fission Hybrid Reactor)and supported by the National Natural Science Foundation of China(Grant No.11875239).
文摘A Z-pinch dynamic hohlraum can create the high-temperature radiation field required by indirect-drive inertial confinement fusion.A dynamic hohlraum with peak radiation temperature over 300 eV can be obtained with a>50 MA Z-pinch driver according to the scaling law of dynamic hohlraum radiation temperature vs drive current.Based on a uniform 300 eV radiation temperature profile with a width of 10 ns,three double-shell capsules with radii of 2,2.5,and 3 mm are proposed,and the corresponding fusion yields from a one-dimensional calculation are 28.8,56.1,and 101.6 MJ.The implosion dynamics of the 2.5 mm-radius capsule is investigated in detail.At ignition,the areal density of the fuel is about 0.53 g/cm^(2),the fuel pressure is about 80 Gbar,and the central ion temperature is about 4.5 keV,according to the one-dimensional simulation.A two-dimensional simulation indicates that the double-shell capsule can implode nearly spherically when driven by the radiation field of a Z-pinch dynamic hohlraum.The sensitivities of the fusion performance to the radiation temperature profiles and to deviations in the capsule parameter are investigated through one-dimensional simulation,and it is found that the capsule fusion yields are rather stable in a quite large parameter space.A one-dimensional simulation of a capsule embedded in 50 mg/cm^(3)CH foam indicates that the capsule performance does not change greatly in the mimicked environment of a Z-pinch dynamic hohlraum.The double-shell capsules designed here are also applicable to laser indirect-drive inertial fusion,if a laser facility can produce a uniform 300 eV radiation field and sustain it for about 10 ns.
文摘Small-angle X-ray scattering(SAXS)using synchrotron radiation as X-ray source has been employed to charactcizc the microscopic structrure of organo-modified mesoporous molecular sieves(organo-MSU-X)prepared by a one-pot template-directed synthesis.It is shown that the SAXS profile is hardly constant with Porod’s law showing a negative slope,i.e.,negative deviation.This suggests that there is diffuse interfacial layer located between the pores and the matrix.This suggests that the organic groups remain covalently linked to the matrix,as indicated by ^29SiCP MAS NMR and FT-IR.The average thickness of the interfacial layer was found to be about 1nm for each of the three samples with different kinds and the same amounts(20? of organic groups.This kind of material has also been proved to possess both surface and mass fractal structure of the amophous porous silica materials.2001 Elsevier Science B.V.All rights reserved.
基金the National Natural Science Foundation of China(12202191,92271103)Natural Science Foundation of Jiangsu Province(BK20210273)+1 种基金Fund of Prospective Layout of Scientific Research for NUAA(Nanjing University of Aeronautics and Astronautics)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘To improve the efficiency of the discrete unified gas kinetic scheme(DUGKS)in capturing cross-scale flow physics,an adaptive partitioning-based discrete unified gas kinetic scheme(ADUGKS)is developed in this work.The ADUGKS is designed from the discrete characteristic solution to the Boltzmann-BGK equation,which contains the initial distribution function and the local equilibrium state.The initial distribution function contributes to the calculation of free streaming fluxes and the local equilibrium state contributes to the calculation of equilibrium fluxes.When the contribution of the initial distribution function is negative,the local flow field can be regarded as the continuous flow and the Navier-Stokes(N-S)equations can be used to obtain the solution directly.Otherwise,the discrete distribution functions should be updated by the Boltzmann equation to capture the rarefaction effect.Given this,in the ADUGKS,the computational domain is divided into the DUGKS cell and the N-S cell based on the contribu-tion of the initial distribution function to the calculation of free streaming fluxes.In the N-S cell,the local flow field is evolved by solving the N-S equations,while in the DUGKS cell,both the discrete velocity Boltzmann equation and the correspond-ing macroscopic governing equations are solved by a modified DUGKS.Since more and more cells turn into the N-S cell with the decrease of the Knudsen number,a significant acceleration can be achieved for the ADUGKS in the continuum flow regime as compared with the DUGKS.
文摘1 Results Micro-porous polymer electrolytes(MPEs), which almost obtained by the conventional methods of phase inversion process or immersion precipitation method, have significant advantages such as high ionic conductivity and excellent mechanical properties[1].In our work, micro-porous structure is obtained by adding SnO2 nanorods usually used as gas senor materials into the polymer matrix, which proves a new way to prepare MPEs.SnO2 nanorods were synthesized by microemulsion hydrothermal method[2]. Th...
基金Supported by the National Key R&D Program of China(2018YFA0404403)the National Natural Science Foundation of China(11775004,U1867214,11875074,11961141003)+1 种基金the funding from the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2021ZZ01)the funding from Heavy Ion Research Facility in Lanzhou(HIR2021PY002)。
文摘Two low-lying unbound states in ^(16)C are investigated by deuteron inelastic scattering in inverse kinematics.Besides the 2^(-) state at 5.45 MeV previously measured in a 1n knockout reaction,a new resonant state at 6.89 MeV is observed for the first time.The inelastic scattering angular distributions of these two states are well reproduced by the distorted-wave Born approximation(DWBA)calculation with an l=1 excitation.In addition,the spinparities of the unbound states are discussed and tentatively assigned based on shell model calculations using the modified YSOX interaction.