The Phased Array Feed(PAF)is considered as one of the next generation receivers for radio telescopes,which can significantly enlarge the instantaneous Field-of-View of large aperture single dish radio telescopes and e...The Phased Array Feed(PAF)is considered as one of the next generation receivers for radio telescopes,which can significantly enlarge the instantaneous Field-of-View of large aperture single dish radio telescopes and enable more flexible observing configurations.Study efforts on PAF development for radio telescopes have been made for more than two decades and have become more and more applicable.We report the development of an ambient-temperature 19 element L-band PAF system and the experimental results including its far field beam pattern and system temperature measurement,which achieve the expectations.Implementing the aperture array beam-forming method,we demonstrate a wide-field Galactic HI observations in the radio camera mode.The results indicate that this system might be applicable for strong Galactic transient detections.This system could be directly equipped to large telescopes like the Five-hundred-meter Aperture Spherical radio Telescope(FAST)and FAST array in the future.展开更多
Friction stir lap welding of a DP1180 advanced ultrahigh strength steel was successfully carried out by using three welding tools with different pin lengths. The effects of the welding heat input and material flow on ...Friction stir lap welding of a DP1180 advanced ultrahigh strength steel was successfully carried out by using three welding tools with different pin lengths. The effects of the welding heat input and material flow on the microstructure evolution of the joints were analyzed in detail. The relationship between pin length and mechanical properties of lap joints was studied. The results showed that the peak temperatures of all joints exceeded A c3, and martensite phases with similar morphologies were formed in the stir zones. These martensite retained good toughness due to the self-tempering effect. The formation of ferrite and tempered martensite was the main reason for the hardness reduction in heat-affected zone. The mechanical properties of the lap joints were determined by loading mode, features of lap interface and the joint defects. When the stir pin was inserted into the lower sheet with a depth of 0.4 mm, the lap joint exhibited the maximum tensile strength of 12.4 kN.展开更多
Ultrahigh-strength quenching and partitioning(Q&P) steels have attracted strong interests in the auto manufactory,while the comprehensive understanding in the microstructure and mechanical behavior of their welded...Ultrahigh-strength quenching and partitioning(Q&P) steels have attracted strong interests in the auto manufactory,while the comprehensive understanding in the microstructure and mechanical behavior of their welded joints is highly needed to enrich their applications.In the present work,it is designed to make an insight into these imperative conundrums.Equal strength Q&P 1180 steel joints to parent metal were successfully fabricated via friction stir welding(FSW) technique under different parameters. Apparent hardening and softening were observed in stir zone(SZ) and heat-affected zone(HAZ) respectively,whose microstructures strongly depended on the peak temperature and cooling rate during welding.The formation of fresh martensite was the main mechanism for the SZ hardening,while the decomposition of metastable phases played key roles in the microhardness drop of the HAZ.A heat source zone-isothermal phase transition layer model was proposed to clarify the impregnability of the joint strength under parameter variation.The dual-phase structure,nano-carbide particles,tempered initial martensite,and ultrafine-grained ferrite synergistically improved the strain hardening ability of the HAZ,which eventually resulted in the equal strength FSW joints.展开更多
基金supported by the National Key R&D Program of China under grant No.2018YFA0404703the Open Project Program of the Key Laboratory of FAST,NAOC,Chinese Academy of Sciences。
文摘The Phased Array Feed(PAF)is considered as one of the next generation receivers for radio telescopes,which can significantly enlarge the instantaneous Field-of-View of large aperture single dish radio telescopes and enable more flexible observing configurations.Study efforts on PAF development for radio telescopes have been made for more than two decades and have become more and more applicable.We report the development of an ambient-temperature 19 element L-band PAF system and the experimental results including its far field beam pattern and system temperature measurement,which achieve the expectations.Implementing the aperture array beam-forming method,we demonstrate a wide-field Galactic HI observations in the radio camera mode.The results indicate that this system might be applicable for strong Galactic transient detections.This system could be directly equipped to large telescopes like the Five-hundred-meter Aperture Spherical radio Telescope(FAST)and FAST array in the future.
基金supported by the National Natural Science Foundation of China (Nos. 51671190, 51774085 and 51471171).
文摘Friction stir lap welding of a DP1180 advanced ultrahigh strength steel was successfully carried out by using three welding tools with different pin lengths. The effects of the welding heat input and material flow on the microstructure evolution of the joints were analyzed in detail. The relationship between pin length and mechanical properties of lap joints was studied. The results showed that the peak temperatures of all joints exceeded A c3, and martensite phases with similar morphologies were formed in the stir zones. These martensite retained good toughness due to the self-tempering effect. The formation of ferrite and tempered martensite was the main reason for the hardness reduction in heat-affected zone. The mechanical properties of the lap joints were determined by loading mode, features of lap interface and the joint defects. When the stir pin was inserted into the lower sheet with a depth of 0.4 mm, the lap joint exhibited the maximum tensile strength of 12.4 kN.
基金supported by the National Natural Science Foundation of China under Grant Nos. 51671190, 51901225, 51774085 and 52034005the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (2020RALKFKT009)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017236)。
文摘Ultrahigh-strength quenching and partitioning(Q&P) steels have attracted strong interests in the auto manufactory,while the comprehensive understanding in the microstructure and mechanical behavior of their welded joints is highly needed to enrich their applications.In the present work,it is designed to make an insight into these imperative conundrums.Equal strength Q&P 1180 steel joints to parent metal were successfully fabricated via friction stir welding(FSW) technique under different parameters. Apparent hardening and softening were observed in stir zone(SZ) and heat-affected zone(HAZ) respectively,whose microstructures strongly depended on the peak temperature and cooling rate during welding.The formation of fresh martensite was the main mechanism for the SZ hardening,while the decomposition of metastable phases played key roles in the microhardness drop of the HAZ.A heat source zone-isothermal phase transition layer model was proposed to clarify the impregnability of the joint strength under parameter variation.The dual-phase structure,nano-carbide particles,tempered initial martensite,and ultrafine-grained ferrite synergistically improved the strain hardening ability of the HAZ,which eventually resulted in the equal strength FSW joints.