The superplasticity of Ti-6Al-4V butt-welded plates by laser beam welding(LBW)was studied in virtue of hot tensile tests and superplastic bulging tests.Furthermore,microstructural evolution of weld metal upon superpla...The superplasticity of Ti-6Al-4V butt-welded plates by laser beam welding(LBW)was studied in virtue of hot tensile tests and superplastic bulging tests.Furthermore,microstructural evolution of weld metal upon superplastic forming was systematically analyzed via metallographical tests and scanning electron microscope(SEM).The relation between the microstructure of weld metal and its superplastic ability was discussed.The experimental results show that Ti-6Al-4V butt-welded plates by LBW possess superplasticity.The maximum elongation is up to 154%and the maximum bulge height can be up to 1.81 times the internal radius of the female die.There is an optimum value of the bulge height for bulging gas pressure.展开更多
In this paper,the 2.6 vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering(HPS)at 1100℃ for 1 h,and the quantitative relationships between phases and heat treatment temperature...In this paper,the 2.6 vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering(HPS)at 1100℃ for 1 h,and the quantitative relationships between phases and heat treatment temperatures were established.The results showed that the volume fraction phases changed linearly with a range of solution temperature(930-1010℃)and aging temperature(400-600℃).Moreover,the composites with equiaxed microstructure were obtained due to the static recrystallization after solution treated at 950℃ for 1 h and aging treated at 600℃ for 12 h.The ultimate high temperature tensile strengths were 772,658,392 and 182 MPa,and the elongations were 9.1%,12.5%,28.6%and 35.3%at 400,500,600 and 700℃,respectively.In addition,fractured morphology analysis indicated the excellent strengthening effect of TiBw at a temperature below 600℃.However,the strengthening effect was significantly reduced due to the debonding of matrix and TiBw at 700℃ and caused the cracks to propagate along the grain boundary.展开更多
基金Project(50775052)supported by the National Natural Science Foundation of China。
文摘The superplasticity of Ti-6Al-4V butt-welded plates by laser beam welding(LBW)was studied in virtue of hot tensile tests and superplastic bulging tests.Furthermore,microstructural evolution of weld metal upon superplastic forming was systematically analyzed via metallographical tests and scanning electron microscope(SEM).The relation between the microstructure of weld metal and its superplastic ability was discussed.The experimental results show that Ti-6Al-4V butt-welded plates by LBW possess superplasticity.The maximum elongation is up to 154%and the maximum bulge height can be up to 1.81 times the internal radius of the female die.There is an optimum value of the bulge height for bulging gas pressure.
基金Project(51905123)supported by the National Natural Science Foundation of ChinaProject(ZR2019MEM037)supported by the Natural Science Foundation of Shandong Province,China。
文摘In this paper,the 2.6 vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering(HPS)at 1100℃ for 1 h,and the quantitative relationships between phases and heat treatment temperatures were established.The results showed that the volume fraction phases changed linearly with a range of solution temperature(930-1010℃)and aging temperature(400-600℃).Moreover,the composites with equiaxed microstructure were obtained due to the static recrystallization after solution treated at 950℃ for 1 h and aging treated at 600℃ for 12 h.The ultimate high temperature tensile strengths were 772,658,392 and 182 MPa,and the elongations were 9.1%,12.5%,28.6%and 35.3%at 400,500,600 and 700℃,respectively.In addition,fractured morphology analysis indicated the excellent strengthening effect of TiBw at a temperature below 600℃.However,the strengthening effect was significantly reduced due to the debonding of matrix and TiBw at 700℃ and caused the cracks to propagate along the grain boundary.