中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)植物物候观测数据集是CERN生态站植物物候观测数据综合集成的产物,包含21个生态站2003~2015年660余个物种的物候观测记录。因木本植物和草本植物观测的物候期不同,本数...中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)植物物候观测数据集是CERN生态站植物物候观测数据综合集成的产物,包含21个生态站2003~2015年660余个物种的物候观测记录。因木本植物和草本植物观测的物候期不同,本数据集被分为木本子集和草本子集。木本子集主要记录了芽开放期、展叶期、开花始期、开花盛期、果实或者种子成熟期、叶秋季变色期和落叶期等物候信息。草本子集则记录了萌动期、开花期、果实或种子成熟期、种子散布期和黄枯期等物候信息。另外,本数据集还包含生态站代码、年份、样地代码、样地名称、样地类别、植物种名、拉丁名等信息。本数据集可以为环境变化、碳循环、植物对环境变化的响应等方面的研究提供数据支持。展开更多
To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass...To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.展开更多
To examine the effects of microtopography on the stoichiometry of carbon(C), nitrogen(N) and phosphorus(P) in mosses along the hummock-hollow gradient in boreal peatlands, we investigated species-level C?N, C?P and N?...To examine the effects of microtopography on the stoichiometry of carbon(C), nitrogen(N) and phosphorus(P) in mosses along the hummock-hollow gradient in boreal peatlands, we investigated species-level C?N, C?P and N?P ratios of five mosses(Sphagnum magellanicum, S. perichaetiale, S. palustre, S. girgensohnii and Aulacomnium palustre) in the hummocks, hollows and their intermediate zones, and then assessed community-level spatial patterns in a boreal ombrotrophic peatland of north of the Great Xing'an Mountain, Northeast China. The results show that at the species level, C?N, C?P and N?P ratios of the selected Sphagnum mosses remained stable in the hummock-hollow complexes due to unchanged C, N and P concentrations, whereas the non-Sphagnum moss(A. palustre) in the hummocks and intermediate zones had lower P concentrations and thus greater C?P ratios than that in the hollows. At the community level, moss N concentration and C?N ratio remained constant along the hummock-hollow gradient, whereas hummocks and intermediate zones had higher community-level moss C?P and N?P ratios than hollows because of greater C and lower P concentrations. These findings imply that the effects of microtopography on moss C?N?P stoichiometry are scale-dependent and reveal spatial heterogeneity in C and nutrient dynamics. These results provide a more comprehensive understanding of biogeochemical cycles in boreal peatlands.展开更多
文摘中国生态系统研究网络(Chinese Ecosystem Research Network,CERN)植物物候观测数据集是CERN生态站植物物候观测数据综合集成的产物,包含21个生态站2003~2015年660余个物种的物候观测记录。因木本植物和草本植物观测的物候期不同,本数据集被分为木本子集和草本子集。木本子集主要记录了芽开放期、展叶期、开花始期、开花盛期、果实或者种子成熟期、叶秋季变色期和落叶期等物候信息。草本子集则记录了萌动期、开花期、果实或种子成熟期、种子散布期和黄枯期等物候信息。另外,本数据集还包含生态站代码、年份、样地代码、样地名称、样地类别、植物种名、拉丁名等信息。本数据集可以为环境变化、碳循环、植物对环境变化的响应等方面的研究提供数据支持。
基金Under the auspices of Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues of Chinese Academy of Sciences(No.XDA05050508)Ministry of Land and Resources Program(No.201111023,GZH201100203)Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources(No.MRE201101)
文摘To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands.
基金Under the auspices of National Natural Science Foundation of China(No.31570479,41671091,41730643,41471056)
文摘To examine the effects of microtopography on the stoichiometry of carbon(C), nitrogen(N) and phosphorus(P) in mosses along the hummock-hollow gradient in boreal peatlands, we investigated species-level C?N, C?P and N?P ratios of five mosses(Sphagnum magellanicum, S. perichaetiale, S. palustre, S. girgensohnii and Aulacomnium palustre) in the hummocks, hollows and their intermediate zones, and then assessed community-level spatial patterns in a boreal ombrotrophic peatland of north of the Great Xing'an Mountain, Northeast China. The results show that at the species level, C?N, C?P and N?P ratios of the selected Sphagnum mosses remained stable in the hummock-hollow complexes due to unchanged C, N and P concentrations, whereas the non-Sphagnum moss(A. palustre) in the hummocks and intermediate zones had lower P concentrations and thus greater C?P ratios than that in the hollows. At the community level, moss N concentration and C?N ratio remained constant along the hummock-hollow gradient, whereas hummocks and intermediate zones had higher community-level moss C?P and N?P ratios than hollows because of greater C and lower P concentrations. These findings imply that the effects of microtopography on moss C?N?P stoichiometry are scale-dependent and reveal spatial heterogeneity in C and nutrient dynamics. These results provide a more comprehensive understanding of biogeochemical cycles in boreal peatlands.