期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Aurora A Kinase Plays a Key Role in Mitosis Skip during Senescence Induced by Ionizing Radiation
1
作者 zhang xu rui zhang Tong Shan +3 位作者 zhang Ya Nan HUA Jun rui WANG Ju Fang HE Jin Peng 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第10期903-916,共14页
Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora... Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping. 展开更多
关键词 Ionizing radiation SENESCENCE G2 arrest TETRAPLOID Mitosis skipping
下载PDF
p21 is Responsible for Ionizing Radiation-induced Bypass of Mitosis
2
作者 zhang xu rui LIU Yong Ai +3 位作者 SUN Fang LI He LEI Su Wen WANG Ju Fang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2016年第7期484-493,共10页
Objective To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest.Methods Protein expression levels were assessed by western blot in the hu... Objective To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest.Methods Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation.Depletion of p21 was carried out by employing the siR NA technique.Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28,an M-phase marker.Senescence was assessed by senescenceassociated-β-galactosidase(SA-β-gal) staining combined with Ki67 staining,a cell proliferation marker.Results Accompanying increased p21,the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays.Furthermore,these irradiated cells were blocked at the G2 phase followed by cellular senescence.Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases,as well as the high expression of histone H3 phosphorylated at Ser28.Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells.However,cells with serious DNA damage failed to undergo cytokinesis,leading to the accumulation of multinucleated cells.Conclusion Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation.Downregulation of p21 by siR NA resulted in G2-arrested cells entering into mitosis with serious DNA damage.This is the first report on elucidating the role of p21 in the bypass of mitosis. 展开更多
关键词 G2/M transition DNA damage Ionizing radiation G2 arrest
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部