期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial-temporal differentiation and influencing factors of rural settlements in mountainous areas: an example of Liangshan Yi Autonomous Prefecture, Southwestern China 被引量:1
1
作者 WANG Yumeng DENG Qingchun +3 位作者 YANG Haiqing LIU Hui YANG Feng zhao yakai 《Journal of Mountain Science》 SCIE CSCD 2024年第1期218-235,共18页
Rural settlement is the basic spatial unit for compact communities in rural area. Scientific exploration of spatial-temporal differentiation and its influencing factors is the premise of spatial layout rationalization... Rural settlement is the basic spatial unit for compact communities in rural area. Scientific exploration of spatial-temporal differentiation and its influencing factors is the premise of spatial layout rationalization. Based on land use data of Liangshan Yi Autonomous Prefecture(hereinafter referred to as Liangshan Prefecture) in Sichuan Province, China from 1980 to 2020, compactness index, fractal dimension, imbalance index, location entropy and the optimal parameters-based geographical detector(OPGD) model are used to analyze the spatial-temporal evolution of the morphological characteristics of rural settlements, and to explore the influence of natural geographical factors, socioeconomic factors, and policy factors on the spatial differentiation of rural settlements. The results show that:(1) From 1980 to 2020, the rural settlements area in Liangshan Prefecture increased by 15.96 km^(2). In space, the rural settlements are generally distributed in a local aggregation, dense in the middle and sparse around the periphery. In 2015, the spatial density and expansion index of rural settlements reached the peak.(2) From 1980 to 2020, the compactness index decreased from 0.7636 to 0.7496, the fractal dimension increased from 1.0283 to 1.0314, and the fragmentation index decreased from 0.1183 to 0.1047. The spatial morphological structure of rural settlements tended to be loose, the shape contour tended to be complex, the degree of fragmentation decreased, and the spatial distribution was significantly imbalanced.(3) The results of OPGD detection in 2015 show that the influence of each factor is slope(0.2371) > traffic accessibility(0.2098) > population(0.1403) > regional GDP(0.1325) > elevation(0.0987) > poverty alleviation(0). The results of OPGD detection in 2020 show that the influence of each factor is slope(0.2339) > traffic accessibility(0.2198) > population(0.1432) > regional GDP(0.1219) > poverty alleviation(0.0992) > elevation(0.093). Natural geographical factors(slope and elevation) are the basic factors affecting the spatial distribution of rural settlements, and rural settlements are widely distributed in the river valley plain and the second half mountain area. Socioeconomic factors(traffic accessibility, population, and regional GDP) have a greater impact on the spatial distribution of rural settlements, which is an important factor affecting the spatial distribution of rural settlements. Policy factors such as poverty alleviation relocation have an indispensable impact on the spatial distribution of rural settlements. The research results can provide decisionmaking basis for the spatial arrangement of rural settlements in Liangshan Prefecture, and optimize the implementation of rural revitalization policies. 展开更多
关键词 Rural settlements Location entropy Geographical detector Spatiotemporal differentiation Influencing factors
原文传递
元谋干热河谷浅沟测量方法比较与精度评价 被引量:1
2
作者 赵亚凯 邓青春 +3 位作者 刘辉 杨海青 杨枫 汪宇濛 《测绘通报》 CSCD 北大核心 2022年第12期70-74,75,76,83,共8页
为探究不同测量方法获取浅沟数据的精度,本文以元谋干热河谷区浅沟为例,采用RTK、三维激光扫描、近景摄影测量等多种测量方法获取浅沟数据,建立DEM并提取浅沟形态参数,对比近景摄影测量以不同方式获取标记坐标后建立DEM的差异,同时以测... 为探究不同测量方法获取浅沟数据的精度,本文以元谋干热河谷区浅沟为例,采用RTK、三维激光扫描、近景摄影测量等多种测量方法获取浅沟数据,建立DEM并提取浅沟形态参数,对比近景摄影测量以不同方式获取标记坐标后建立DEM的差异,同时以测针板实测浅沟横剖面为参照,对比分析不同测量方法获取浅沟横剖面的精度。结果表明:RTK获取密度较低的点数据,建立的DEM较粗糙,仅体现沟缘大致走向;近景摄影测量+RTK方法测得的DEM高程整体低于近景摄影测量+全站仪所得DEM高程;利用三维激光扫描仪和近景摄影测量+全站仪两种方法获取数据所提取的浅沟形态参数精度较高;对比浅沟横剖面,横剖面近景摄影测量+全站仪测量所得与实测横剖面重合度较高。因此,利用近景摄影测量+全站仪进行浅沟测量,在精度、效率等方面优势较大。 展开更多
关键词 三维激光扫描 近景摄影测量 RTK 浅沟 DEM 元谋干热河谷
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部