The current work proposes a model describing the dynamics of coated microbubbles, which simplifies the traditional three-layer model to a two-layer one by introducing a visco-elastic interface with variable surface te...The current work proposes a model describing the dynamics of coated microbubbles, which simplifies the traditional three-layer model to a two-layer one by introducing a visco-elastic interface with variable surface tension coefficients to connect the gas zone and the liquid zone. In the modified model, the traditional two interfaces boundary conditions are combined into one to simplify the description of the bubble. Moreover, the surface tension coefficient is defined as a function of bubble radius with lower and upper limits, which are related to the buckling and rupture mechanisms of the bubble. Further discussion is made regarding the effects resulting from the change of the surface tension coefficient on bubble dynamics. The dynamic responses of Optison and Sonozoid microbubbles, measured experimentally based on light scattering technology (adapted from previously published work), are simulated using both classic three-layer models (e.g. Church's model) and simplified model. The results show that our simplified model works as well as the Church's model.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10434070, 10704037)Young Scholar Technological Innovation Projects of Jiangsu Province (China) (Grant No. BK2007569)+1 种基金Research Fund for Doctoral Program (for new scholars) of Higher Education of China (Grant No. 20070284070)Ministry of Education Priorities Project (Grant No. 103078)
文摘The current work proposes a model describing the dynamics of coated microbubbles, which simplifies the traditional three-layer model to a two-layer one by introducing a visco-elastic interface with variable surface tension coefficients to connect the gas zone and the liquid zone. In the modified model, the traditional two interfaces boundary conditions are combined into one to simplify the description of the bubble. Moreover, the surface tension coefficient is defined as a function of bubble radius with lower and upper limits, which are related to the buckling and rupture mechanisms of the bubble. Further discussion is made regarding the effects resulting from the change of the surface tension coefficient on bubble dynamics. The dynamic responses of Optison and Sonozoid microbubbles, measured experimentally based on light scattering technology (adapted from previously published work), are simulated using both classic three-layer models (e.g. Church's model) and simplified model. The results show that our simplified model works as well as the Church's model.