Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our...Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.展开更多
To evaluate the anesthetic effect of ultrasound-guided(USG)ilioinguinal/iliohypogastric nerve(Ⅱ/IHN)block combined with genital branch of genitofemoral nerve(GFN)block in the elderly undergoing inguinal hernia repair...To evaluate the anesthetic effect of ultrasound-guided(USG)ilioinguinal/iliohypogastric nerve(Ⅱ/IHN)block combined with genital branch of genitofemoral nerve(GFN)block in the elderly undergoing inguinal hernia repair,54 old patients(aged 60-96years,ASAⅠ-Ⅲ)with indirect hernia were enrolled and scheduled for unilateral tensiofree herniorrhaphy.Patients were grouped randomly to receive either USGⅡ/IHN plus GFN block(Group G)or USGⅡ/IHN block alone(GroupⅠ).The intraoperative visual analogue scale(VAS)scores were recorded at skin incision,at spermatic cord/round ligament traction and at sac ligation.The resting and dynamic VAS scores were recorded postoperatively.The requirements of extra sedatives and analgesics for intra-and postoperative analgesia were assessed.Occurrence of complications of the block,postoperative nausea and vomiting and femoral nerve palsy was also reported.Both groups showed similar sensory block.When stretching spermatic cord/round ligament,the patients in group G had significantly lower VAS scores than in group.And group G used much fewer adjuvant sedatives and analgesics to achieve adequate anaesthesia.In addition,group G was presented with better intraoperative anaesthesia and lower postoperative dynamic VAS scores at all time points tested.No significant difference was found in the postoperative requirement of rescue medication.Both groups showed no complications related to the block and group G reported no femoral nerve palsy.The addition of GFN block toⅡ/IHN block improves the quality of perioperative anesthesia and analgesia in the elderly and reduces the consumption of extra sedatives and analgesics during the surgery.展开更多
BACKGROUND Conventional recanalization techniques may fail in patients with completely occluded superior vena cava(SVC).AIM To analyze the effectiveness and complications of sharp recanalization for completely occlude...BACKGROUND Conventional recanalization techniques may fail in patients with completely occluded superior vena cava(SVC).AIM To analyze the effectiveness and complications of sharp recanalization for completely occluded SVC.METHODS This was a retrospective study of patients that underwent puncture and recanalization of the SVC between January 2016 and December 2017 at our hospital.Sharp recanalization was performed using the RUPS-100 system.The patients were followed for 12 mo.The main outcomes were the patency rate of SVC and arteriovenous fistula flow during dialysis.RESULTS The procedure was successful in all 14 patients(100%).Blood pressure in the distal SVC decreased in all 14 cases(100%)from 26.4±2.7 cmH2O to 14.7±1.3 cmH2O(P<0.05).The first patency rates of the SVC at 24 h and at 3,6,9 and 12 mo after sharp recanalization were 100%,92.9%,85.7%,78.6%and 71.4%,respectively.There were two(14.3%)severe,one(7.1%)moderate and one(7.1%)minor complication.The severe complications included one case of pericardial tamponade and one case of hemothorax.CONCLUSION The results suggest that sharp recanalization can be an additional tool to extend or renew the use of an occluded upper extremity access for hemodialysis.This could be of use in patients with long-term maintenance hemodialysis in whom the maintenance of central venous access is often a challenge.展开更多
The presence of a large palatal or maxillary defect after partial or total maxillectomy for tumor, trauma or congenital deformation poses a challenge to prosthodontists, particularly when the use of an implant cannot ...The presence of a large palatal or maxillary defect after partial or total maxillectomy for tumor, trauma or congenital deformation poses a challenge to prosthodontists, particularly when the use of an implant cannot be considered. This case report described the use of an air valve in a hollow silicone obturator to manufacture an inflatable obturator that could be extended further into undercut area to retain itself. The inflatable obturator exhibited adequate retention, stability and border sealing, thereby improving the masticatory, pronunciation and swallowing functions of patients. It may be a suitable alternative treatment option to an implant-retained obturator.展开更多
The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute or...The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.展开更多
Formaldehyde is a pollutant that significantly affects the indoor air quality.However,conventional remediation approaches can be challenging to deal with low-concentration formaldehyde in an indoor environment.In this...Formaldehyde is a pollutant that significantly affects the indoor air quality.However,conventional remediation approaches can be challenging to deal with low-concentration formaldehyde in an indoor environment.In this study,Photocatalysts of Ag/graphitic carbon nitride(g-C_(3)N_(4))/Ni with 3D reticulated coral structure were prepared by thermal polymerization and liquid phase photo-deposition,using nickel foam(NF)as the carrier.Experiments demonstrated that when the Ag concentration was 3%,and the relative humidity was 60%,the Ni/Ag/g-C_(3)N_(4)showed the maximum degradation rate of formaldehyde at 90.19%under visible light irradiation,and the formaldehyde concentration after degradation was lower than the Hygienic standard stated by the Chinese Government.The porous structure of Ni/Ag/g-C_(3)N_(4)and the formation of Schottky junctions promoted the Adsorption efficiency and degradation of formaldehyde,while the nickel foam carrier effectively promoted the desorption of degradation products.Meanwhile,the degradation rate was only reduced by3.4%after 16 recycles,the three-dimensional porous structure extended the lifetime of the photocatalyst.This study provides a new strategy for the degradation of indoor formaldehyde at low concentrations.展开更多
Cellular heterogeneity is a universal property of living systems,and the interrogation of single cells facilitates in-depth understanding of distinct cellular states and functions in various biological processes.Co-an...Cellular heterogeneity is a universal property of living systems,and the interrogation of single cells facilitates in-depth understanding of distinct cellular states and functions in various biological processes.Co-analysis of transcripts and proteins from the same single cells opens the way to decipher complex RNA regulatory frameworks and phenotypes,facilitating the understanding of cellular fate and function regulations,discovery of novel cell types,and construction of a high-resolution cell atlas.Herein,we review the state-of-art advances in the development of methodologies for co-analysis of single-cell transcripts and proteins.First,imaging-based methods are summarized with particular emphasis on optical and mass spectrometry imaging.Next,sequencing-based approaches for high-throughput and sensitive co-analysis of single-cell transcripts and proteins are described,including droplet-,microwell-,and split-pool-based platforms.Subsequently,combined methods with more flexibility and universality are discussed.These methods commonly employ different strategies or reactions to convert transcripts and proteins of single cells into distinct signals simultaneously,which can be detected by different instruments or platforms.Lastly,some perspectives on the future challenges and development trends in this field are presented.展开更多
Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way.Three-dimension(3D)spatially resolved transcriptomic atlases constructed from multi-view and h...Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way.Three-dimension(3D)spatially resolved transcriptomic atlases constructed from multi-view and high-dimensional data have rapidly emerged as a powerful tool to unravel spatial gene expression patterns and cell type distribution in biological samples,revolutionizing the understanding of gene regulatory interactions and cell niches.However,limited accessible tools for data visualization impede the potential impact and application of this technology.Here we introduce VT3D,a visualization toolbox that allows users to explore 3D transcriptomic data,enabling gene expression projection to any 2D plane of interest,2D virtual slice creation and visualization,and interactive 3D data browsing with surface model plots.In addition,it can either work on personal devices in standalone mode or be hosted as a web-based server.We apply VT3D to multiple datasets produced by the most popular techniques,including both sequencing-based approaches(Stereo-seq,spatial transcriptomics,and Slide-seq)and imaging-based approaches(MERFISH and STARMap),and successfully build a 3D atlas database that allows interactive data browsing.We demonstrate that VT3D bridges the gap between researchers and spatially resolved transcriptomics,thus accelerating related studies such as embryogenesis and organogenesis processes.The source code of VT3D is available at https://github.com/BGI-Qingdao/VT3D,and the modeled atlas database is available at http://www.bgiocean.com/vt3d_example.展开更多
Glioblastomas(GBMs)are highly lethal primary brain tumors.Despite current therapeutic advances in other solid cancers,the treatment of these malignant gliomas remains essentially palliative.GBMs are extremely resistan...Glioblastomas(GBMs)are highly lethal primary brain tumors.Despite current therapeutic advances in other solid cancers,the treatment of these malignant gliomas remains essentially palliative.GBMs are extremely resistant to conventional radiation and chemotherapies.We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells(GSCs)promotes therapeutic resistance.We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth,which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs.Furthermore,stem cell-like cancer cells(cancer stem cells)have been shown to promote metastasis.Although GBMs rarely metastasize beyond the central nervous system,these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection,and GSCs display an aggressive invasive phenotype.These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment.Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells,but also display critical distinctions that provide important clues into useful therapeutic targets.In this review,we summarize the current understanding and advances in glioma stem cell research,and discuss potential targeting strategies for future development of anti-GSC therapies.展开更多
To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during pr...To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during prolonged voyages. The integrated system comprises a solid amine water desorption (SAWD) unit for CO2 collection and concentration, a Sabatier reactor for CO2 reduction and a solid polymer electrolyte (SPE) unit for O2 regeneration by electrolysis. The performances of the SAWD-Sabatier-SPE integrated system were investigated. The experimental results from the SAWD unit showed that the average CO2 concentration in the CO2 storage tank was more than 96% and the outlet CO2 concentration was nearly zero in the first 45 min, and less than 1/10 of inlet CO2 after 60 min when input CO2 was 0.5% (1000 L). About 950 L of CO2 was recovered with a recovery rate of 92%-97%. The output CO2 concentration was less than 0.2%, which showed that the adsorption-desorption performance of this unit was excellent. In the CO2 reduction unit we investigated mainly the start-up and reaction performance of the Sabatier reactor. The start-up time of the Sabatier reactor was 6, 8 and 10 rain when the start-up temperature was 187.3, 179.5 and 168 ℃, respectively. The product water was colorless, transparent, and had a pH of 6.9-7.5, and an electrical conductivity of 80μs/cm. The sum of the concentration of metal ions (Ru^3+, Al^3+, Pb^2+) was 0.028% and that of nonmetal ions (Cl^-, SO4^2-) was 0.05%. In the O2 regeneration unit, the O2 generation rate was 0.48 m^3/d and the quantity was 2400 L, sufficient to meet the submariners' basic oxygen demands. These results may be useful as a basis for establishing CO2-1evel limits and O2 regeneration systems in submarines or similar enclosed compartments during prolonged voyages.展开更多
Cancer is a severe disease,which have troubled human being for a long time.The development of nanotechnology has provided a new way for cancer treatment.It is a promising strategy to integrate imaging and therapeutic ...Cancer is a severe disease,which have troubled human being for a long time.The development of nanotechnology has provided a new way for cancer treatment.It is a promising strategy to integrate imaging and therapeutic functions into one single nanoplatform to achieve efficient combination of diagnosis and treatment.Herein,we exploited novel CuMo_(2)S_(3)-PEG-Gd nanocomposites(NCs)for magnetic resonance imaging(MRI),guiding the photothermal therapy(PTT)/photodynamic therapy(PDT)/chemodynamic therapy(CDT).The experimental results showed that CuMo_(2)S_(3)-PEG-Gd NCs have a high photothermal conversion efficiency(40.6%),excellent biocompatibility and good biosecurity.The CuMo_(2)S_(3)-PEGGd NCs exhibited a clear MRI performance for tumor due to connecting Gd,which can guide in vivo therapy to improve the therapeutic effect.Moreover,both in vitro and in vivo therapeutic results of CuMo_(2)S_(3)-PEG-Gd NCs exhibited that the PTT/PDT/CDT achieved a remarkably synergistic effect,which could efficiently inhibit the tumor growth.Thus,CuMo_(2)S_(3)-PEG-Gd NCs,which integrated imaging with multiple therapies,have a good potential as theranostic agent for tumor.展开更多
With the increasing demand for high integration and multi-color photodetection for both military and civilian applications, the research of multi-wavelength detectors has become a new research hotspot. However, curren...With the increasing demand for high integration and multi-color photodetection for both military and civilian applications, the research of multi-wavelength detectors has become a new research hotspot. However, current research has been mainly in visible dual-or multi-wavelength detectors, while integration of both visible light and ultraviolet(UV) dual-wavelength detectors has rarely been studied. In this work, large-scale and high-quality monolayer MoS2 was grown by the chemical vapor deposition method on transparent free-standing GaN substrate. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors was demonstrated using common semiconductor fabrication technologies such as photolithography, argon plasma etching, and metal deposition. High performance of a 280 nm and 405 nm dual-wavelength photodetector was realized.The responsivity of the UV detector reached 172.12 A/W, while that of the visible detector reached 17.5 A/W.Meanwhile, both photodetectors achieved high photocurrent gain, high external quantum efficiency, high normalized detection rate, and low noise equivalent power. Our study extends the future application of dual-wavelength detectors for image sensing and optical communication.展开更多
The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses,including murine leukemia virus,Sindbis virus and Ebola virus,by targeting the viral mRNAs for degra...The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses,including murine leukemia virus,Sindbis virus and Ebola virus,by targeting the viral mRNAs for degradation.ZAP directly binds to the target viral mRNA and recruits the cellular RNA degradation machinery to degrade the RNA.No significant sequence similarity or obvious common motifs have been found in the so far identified target viral mRNAs.The minimum length of the target sequence is about 500 nt long.Short workable ZAP-binding RNAs should facilitate further studies on the ZAP-RNA interaction and characterization of such RNAs may provide some insights into the underlying mechanism.In this study,we used the SELEX method to isolate ZAP-binding RNA aptamers.After 21 rounds of selection,ZAP-binding aptamers were isolated.Sequence analysis revealed that they are G-rich RNAs with predicted stem-loop structures containing conserved“GGGUGG”and“GAGGG”motifs in the loop region.Insertion of the aptamer sequence into a luciferase reporter failed to render the reporter sensitive to ZAP.However,overexpression of the aptamers modestly but significantly reduced ZAP’s antiviral activity.Substitution of the conserved motifs of the aptamers significantly impaired their ZAP-binding ability and ZAP-antagonizing activity,suggesting that the RNA sequence is important for specific interaction between ZAP and the target RNA.The aptamers identified in this report should provide useful tools to further investigate the details of the interaction between ZAP and the target RNAs.展开更多
Peroxyacyl nitrates(PANs) are important secondary pollutants in ground-level atmosphere.Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during speci...Peroxyacyl nitrates(PANs) are important secondary pollutants in ground-level atmosphere.Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation(BP) artificial neural network(ANN) and multiple linear regression(MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient(R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836?ppb, root mean squared error of 0.5320?ppb, and Willmott's index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters,providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.展开更多
The Penglai 9-1 oilfield is the largest granite buried-hill oilfield in China presently,genesis and evolution of the granite buried-hill reservoir is complex.Based on geochemical,geophysical,experimental simulation an...The Penglai 9-1 oilfield is the largest granite buried-hill oilfield in China presently,genesis and evolution of the granite buried-hill reservoir is complex.Based on geochemical,geophysical,experimental simulation and other methods,and combined with field geological observation,genetic mechanism of the granite buried-hill reservoir of the Penglai 9-1 oilfield and its hydrocarbon accumulation mode were well investigated.Results showed that the granite was formed by magmatic intrusion along deep faults under intraplate breakup of North China Plate,it was the product of magmatic activities of Yanshan tectonic episode of Circum-Pacific Tectonic Region,and the intrusion time was 160e170 Ma of the Jurassic.Formation of the granite buried-hill reservoir was mainly controlled by the epigenic karstification and tectonic reconstruction,the Yanshanian weathering and denudation controlled macroscopic development characteristics of the granite buried-hill reservoir,and faults and joints formed by Cenozoic tectonic movement promoted modification of the granite buried-hill reservoir.Laterally,thickness of the granite buried-hill reservoir had a positive correlation with fracture density.Vertically,the granite rocks could be divided into five zones:soil zone,sandy zone,broken zone,fracture zone and base rock zone.The upper-middle part(sandy zone,broken zone,fracture zone)of the granite buried hill was the highquality favorable reservoir zone and the main oil-bearing interval.展开更多
We report a simple method for fabricating all-solid-state micro-supercapacitors, utilizing laser writing technology. Porous graphene films with three-dimensional networks induced by laser from commercial polymer was a...We report a simple method for fabricating all-solid-state micro-supercapacitors, utilizing laser writing technology. Porous graphene films with three-dimensional networks induced by laser from commercial polymer was acted as scaffold for loading MnO2, a typical pseudocapacitive materials. Using gel electrolyte, all-solid-state pseudocapacitive micro-supercapacitors were fabricated. Compare to traditional printing and lithography techniques produced micro-supercapacitors, the as-fabricated devices demonstrate high volumetric capacitances, good stability and low leakage current, indicating a scalable and facile approach for future energy storage devices in portable microelectronics.展开更多
Gene co-expression network(GCN)mining identifies gene modules with highly correlated expression profiles across samples/conditions.It enables researchers to discover latent gene/molecule interactions,identify novel ge...Gene co-expression network(GCN)mining identifies gene modules with highly correlated expression profiles across samples/conditions.It enables researchers to discover latent gene/molecule interactions,identify novel gene functions,and extract molecular features from certain disease/condition groups,thus helping to identify disease bio-markers.However,there lacks an easy-to-use tool package for users to mine GCN modules that are relatively small in size with tightly connected genes that can be convenient for downstream gene set enrichment analysis,as well as modules that may share common members.To address this need,we developed an online GCN mining tool package:TSUNAMI(Tools SUite for Network Analysis and MIning).TSUNAMI incorporates our state-of-the-art lmQCM algorithm to mine GCN modules for both public and user-input data(microarray,RNA-seq,or any other numerical omics data),and then performs downstream gene set enrichment analysis for the identified modules.It has several features and advantages:1)a user-friendly interface and real-time co-expression network mining through a web server;2)direct access and search of NCBI Gene Expression Omnibus(GEO)and The Cancer Genome Atlas(TCGA)databases,as well as user-input gene ex-pression matrices for GCN module mining;3)multiple co-expression analysis tools to choose from,all of which are highly flexible in regards to parameter selection options;4)identified GCN modules are summarized to eigengenes,which are convenient for users to check their correlation with other clinical traits;5)integrated downstream Enrichr enrichment analysis and links to other gene set enrichment tools;and 6)visualization of gene loci by Circos plot in any step of the process.The web service is freely accessible through URL:https://biolearns.medicine.iu.edu/.Source code is available at https://github.com/huangzhii/TSUNAMI/.展开更多
The presence of excessive reactive oxygen species(ROS)after injuries to the enthesis could lead to cellular oxidative damage,high inflammatory response,chronic inflammation,and limited fibrochondral inductivity,making...The presence of excessive reactive oxygen species(ROS)after injuries to the enthesis could lead to cellular oxidative damage,high inflammatory response,chronic inflammation,and limited fibrochondral inductivity,making tissue repair and functional recovery difficult.Here,a multifunctional silk fibroin nanofiber modified with polydopamine and kartogenin was designed and fabricated to not only effectively reduce inflammation by scavenging ROS in the early stage of the enthesis healing but also enhance fibrocartilage formation with fibrochondrogenic induction in the later stages.The in vitro results confirmed the antioxidant capability and the fibrochondral inductivity of the functionalized nanofibers.In vivo studies showed that the multifunctional nanofiber can significantly improve the integration of tendon-bone and accelerate the regeneration of interface tissue,resulting in an excellent biomechanical property.Thus,the incorporation of antioxidant and bio-active molecules into extracellular matrix-like biomaterials in interface tissue engineering provides an integrative approach that facilitates damaged tissue regeneration and functional recovery,thereby improving the clinical outcome of the engineered tissue.展开更多
基金National Nature Science Foundation of China(Nos.81960118,81860115,81760116 and 82060116)Guizhou Science and Technology Project:Qiankehe Foundation(No.(2020)1Y300)+8 种基金Natural Science Foundation of Sichuan(No.2022NSFSC0837)Science and Technology Project of Chengdu(No.2022-YF05-01811-SN)Science and Technology Project of Guizhou Province(No.YQK(2023)032)Guizhou Medical University Doctoral Start-Up Fund(No.gyfybsky-2021-27)Guizhou Medical University Doctoral Start-Up Fund(No.gyfybsky-2021-26)Guizhou Science and Technology Department(No.(2019)1259)Guizhou Science and Technology Department Guizhou Science and Technology Platform Talents(No.(2017)5718)Science and Technology Fund of Guizhou Provincial Health Commission(No.gzwki2021-382)The Affiliated Hospital of Guizhou Medical University Excellent Reserve Talent in 2023(No.gyfyxkrc-2023-06).
文摘Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.
文摘To evaluate the anesthetic effect of ultrasound-guided(USG)ilioinguinal/iliohypogastric nerve(Ⅱ/IHN)block combined with genital branch of genitofemoral nerve(GFN)block in the elderly undergoing inguinal hernia repair,54 old patients(aged 60-96years,ASAⅠ-Ⅲ)with indirect hernia were enrolled and scheduled for unilateral tensiofree herniorrhaphy.Patients were grouped randomly to receive either USGⅡ/IHN plus GFN block(Group G)or USGⅡ/IHN block alone(GroupⅠ).The intraoperative visual analogue scale(VAS)scores were recorded at skin incision,at spermatic cord/round ligament traction and at sac ligation.The resting and dynamic VAS scores were recorded postoperatively.The requirements of extra sedatives and analgesics for intra-and postoperative analgesia were assessed.Occurrence of complications of the block,postoperative nausea and vomiting and femoral nerve palsy was also reported.Both groups showed similar sensory block.When stretching spermatic cord/round ligament,the patients in group G had significantly lower VAS scores than in group.And group G used much fewer adjuvant sedatives and analgesics to achieve adequate anaesthesia.In addition,group G was presented with better intraoperative anaesthesia and lower postoperative dynamic VAS scores at all time points tested.No significant difference was found in the postoperative requirement of rescue medication.Both groups showed no complications related to the block and group G reported no femoral nerve palsy.The addition of GFN block toⅡ/IHN block improves the quality of perioperative anesthesia and analgesia in the elderly and reduces the consumption of extra sedatives and analgesics during the surgery.
文摘BACKGROUND Conventional recanalization techniques may fail in patients with completely occluded superior vena cava(SVC).AIM To analyze the effectiveness and complications of sharp recanalization for completely occluded SVC.METHODS This was a retrospective study of patients that underwent puncture and recanalization of the SVC between January 2016 and December 2017 at our hospital.Sharp recanalization was performed using the RUPS-100 system.The patients were followed for 12 mo.The main outcomes were the patency rate of SVC and arteriovenous fistula flow during dialysis.RESULTS The procedure was successful in all 14 patients(100%).Blood pressure in the distal SVC decreased in all 14 cases(100%)from 26.4±2.7 cmH2O to 14.7±1.3 cmH2O(P<0.05).The first patency rates of the SVC at 24 h and at 3,6,9 and 12 mo after sharp recanalization were 100%,92.9%,85.7%,78.6%and 71.4%,respectively.There were two(14.3%)severe,one(7.1%)moderate and one(7.1%)minor complication.The severe complications included one case of pericardial tamponade and one case of hemothorax.CONCLUSION The results suggest that sharp recanalization can be an additional tool to extend or renew the use of an occluded upper extremity access for hemodialysis.This could be of use in patients with long-term maintenance hemodialysis in whom the maintenance of central venous access is often a challenge.
文摘The presence of a large palatal or maxillary defect after partial or total maxillectomy for tumor, trauma or congenital deformation poses a challenge to prosthodontists, particularly when the use of an implant cannot be considered. This case report described the use of an air valve in a hollow silicone obturator to manufacture an inflatable obturator that could be extended further into undercut area to retain itself. The inflatable obturator exhibited adequate retention, stability and border sealing, thereby improving the masticatory, pronunciation and swallowing functions of patients. It may be a suitable alternative treatment option to an implant-retained obturator.
基金Ⅵ. ACKNOWLEDGMENTS Hong-fei Wang thanks the support by the National Natural Science Foundation of China (No.20373076, No.20425309, and No.20533070) and the Ministry of Science and Technology of China (No.2007CB815205). Zhi-feng Cui thanks the support by the Natural Science Foundation of China (No.10674002) and the Natural Science Foundation of Anhui Province (No.ZD2007001-1).
文摘The constructive or destructive spectral interference between the molecular groups oriented up and down at the interface in the sum-frequency generation (SFG) spectra provides a direct measurement of the absolute orientation of these molecular groups. This simple approach can be employed to interrogate absolute molecular orientations other than using the complex absolute phase measurement in the SFG studies. We used the -CN group in the p-cyanophenol (PCP) molecule as the internal phase standard, and we measured the phases of the SFG fields of the -CN groups in the 3,5-dimethyl-4-hydroxy-benzonitrile (35DMHBN) and 2,6-dimethyl-4-hydroxy-benzonitrile (26DMHBN) at the air/water interface by measuring the SFG spectra of the aqueous surfaces of the mixtures of the PCP, 35DMHBN, and 26DMHBN solutions. The results showed that the 35DMHBN had its -CN group pointing into the aqueous phase; while the 26DMHBN, similar to the PCP, had its -CN group pointing away from the aqueous phase. The tilt angles of the -CN group for both the 35DMHBN and 26DMHBN molecules at the air/water interface were around 25°-45° from the interface normal. These results provided insights on the understanding of the detailed balance of the competing factors, such as solvation of the polar head groups, hydrogen bonding and hydrophobic effects, etc., on influencing the absolute molecular orientation at the air/water interface.
基金National Key Research and Development Program (No.2018YFC1802605)Sichuan Regional Innovation Cooperation Project (No.2022YFQ0081)+1 种基金the Chengdu Key R&D Support Plan Project (No.2022-YF05-00357-SN)the Sichuan University-Yibin City School and City Strategic Cooperation Project (No.2020CDYB-9)。
文摘Formaldehyde is a pollutant that significantly affects the indoor air quality.However,conventional remediation approaches can be challenging to deal with low-concentration formaldehyde in an indoor environment.In this study,Photocatalysts of Ag/graphitic carbon nitride(g-C_(3)N_(4))/Ni with 3D reticulated coral structure were prepared by thermal polymerization and liquid phase photo-deposition,using nickel foam(NF)as the carrier.Experiments demonstrated that when the Ag concentration was 3%,and the relative humidity was 60%,the Ni/Ag/g-C_(3)N_(4)showed the maximum degradation rate of formaldehyde at 90.19%under visible light irradiation,and the formaldehyde concentration after degradation was lower than the Hygienic standard stated by the Chinese Government.The porous structure of Ni/Ag/g-C_(3)N_(4)and the formation of Schottky junctions promoted the Adsorption efficiency and degradation of formaldehyde,while the nickel foam carrier effectively promoted the desorption of degradation products.Meanwhile,the degradation rate was only reduced by3.4%after 16 recycles,the three-dimensional porous structure extended the lifetime of the photocatalyst.This study provides a new strategy for the degradation of indoor formaldehyde at low concentrations.
基金the National Natural Science Foundation of China(Nos.22293031,22004083,21927806,82227801,and 82341023)the National Key R&D Program of China(No.2019YFA0905800)the Innovative research team of high-level local universities in Shanghai(No.SHSMU-ZLCX20212601)for their financial support.
文摘Cellular heterogeneity is a universal property of living systems,and the interrogation of single cells facilitates in-depth understanding of distinct cellular states and functions in various biological processes.Co-analysis of transcripts and proteins from the same single cells opens the way to decipher complex RNA regulatory frameworks and phenotypes,facilitating the understanding of cellular fate and function regulations,discovery of novel cell types,and construction of a high-resolution cell atlas.Herein,we review the state-of-art advances in the development of methodologies for co-analysis of single-cell transcripts and proteins.First,imaging-based methods are summarized with particular emphasis on optical and mass spectrometry imaging.Next,sequencing-based approaches for high-throughput and sensitive co-analysis of single-cell transcripts and proteins are described,including droplet-,microwell-,and split-pool-based platforms.Subsequently,combined methods with more flexibility and universality are discussed.These methods commonly employ different strategies or reactions to convert transcripts and proteins of single cells into distinct signals simultaneously,which can be detected by different instruments or platforms.Lastly,some perspectives on the future challenges and development trends in this field are presented.
基金supported by the General Program(Key Program,Major Research Plan)of National Natural Science Foundation of China(No.32170439).
文摘Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way.Three-dimension(3D)spatially resolved transcriptomic atlases constructed from multi-view and high-dimensional data have rapidly emerged as a powerful tool to unravel spatial gene expression patterns and cell type distribution in biological samples,revolutionizing the understanding of gene regulatory interactions and cell niches.However,limited accessible tools for data visualization impede the potential impact and application of this technology.Here we introduce VT3D,a visualization toolbox that allows users to explore 3D transcriptomic data,enabling gene expression projection to any 2D plane of interest,2D virtual slice creation and visualization,and interactive 3D data browsing with surface model plots.In addition,it can either work on personal devices in standalone mode or be hosted as a web-based server.We apply VT3D to multiple datasets produced by the most popular techniques,including both sequencing-based approaches(Stereo-seq,spatial transcriptomics,and Slide-seq)and imaging-based approaches(MERFISH and STARMap),and successfully build a 3D atlas database that allows interactive data browsing.We demonstrate that VT3D bridges the gap between researchers and spatially resolved transcriptomics,thus accelerating related studies such as embryogenesis and organogenesis processes.The source code of VT3D is available at https://github.com/BGI-Qingdao/VT3D,and the modeled atlas database is available at http://www.bgiocean.com/vt3d_example.
文摘Glioblastomas(GBMs)are highly lethal primary brain tumors.Despite current therapeutic advances in other solid cancers,the treatment of these malignant gliomas remains essentially palliative.GBMs are extremely resistant to conventional radiation and chemotherapies.We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells(GSCs)promotes therapeutic resistance.We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth,which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs.Furthermore,stem cell-like cancer cells(cancer stem cells)have been shown to promote metastasis.Although GBMs rarely metastasize beyond the central nervous system,these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection,and GSCs display an aggressive invasive phenotype.These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment.Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells,but also display critical distinctions that provide important clues into useful therapeutic targets.In this review,we summarize the current understanding and advances in glioma stem cell research,and discuss potential targeting strategies for future development of anti-GSC therapies.
基金supported by the National Natural Science Foundation of China (No. 50908062)the State Key Lab of Urban Water Resource and Environment (No. HIT-QAK200808)the Heilongjiang Natural Science Foundation (No. E2007-04), China
文摘To improve the working and living environment of submarine crews, an integrated system of CO2 removal and O2 regeneration was designed to work under experimental conditions for 50 people in a submarine cabin during prolonged voyages. The integrated system comprises a solid amine water desorption (SAWD) unit for CO2 collection and concentration, a Sabatier reactor for CO2 reduction and a solid polymer electrolyte (SPE) unit for O2 regeneration by electrolysis. The performances of the SAWD-Sabatier-SPE integrated system were investigated. The experimental results from the SAWD unit showed that the average CO2 concentration in the CO2 storage tank was more than 96% and the outlet CO2 concentration was nearly zero in the first 45 min, and less than 1/10 of inlet CO2 after 60 min when input CO2 was 0.5% (1000 L). About 950 L of CO2 was recovered with a recovery rate of 92%-97%. The output CO2 concentration was less than 0.2%, which showed that the adsorption-desorption performance of this unit was excellent. In the CO2 reduction unit we investigated mainly the start-up and reaction performance of the Sabatier reactor. The start-up time of the Sabatier reactor was 6, 8 and 10 rain when the start-up temperature was 187.3, 179.5 and 168 ℃, respectively. The product water was colorless, transparent, and had a pH of 6.9-7.5, and an electrical conductivity of 80μs/cm. The sum of the concentration of metal ions (Ru^3+, Al^3+, Pb^2+) was 0.028% and that of nonmetal ions (Cl^-, SO4^2-) was 0.05%. In the O2 regeneration unit, the O2 generation rate was 0.48 m^3/d and the quantity was 2400 L, sufficient to meet the submariners' basic oxygen demands. These results may be useful as a basis for establishing CO2-1evel limits and O2 regeneration systems in submarines or similar enclosed compartments during prolonged voyages.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978165 and 22081340412).
文摘Cancer is a severe disease,which have troubled human being for a long time.The development of nanotechnology has provided a new way for cancer treatment.It is a promising strategy to integrate imaging and therapeutic functions into one single nanoplatform to achieve efficient combination of diagnosis and treatment.Herein,we exploited novel CuMo_(2)S_(3)-PEG-Gd nanocomposites(NCs)for magnetic resonance imaging(MRI),guiding the photothermal therapy(PTT)/photodynamic therapy(PDT)/chemodynamic therapy(CDT).The experimental results showed that CuMo_(2)S_(3)-PEG-Gd NCs have a high photothermal conversion efficiency(40.6%),excellent biocompatibility and good biosecurity.The CuMo_(2)S_(3)-PEGGd NCs exhibited a clear MRI performance for tumor due to connecting Gd,which can guide in vivo therapy to improve the therapeutic effect.Moreover,both in vitro and in vivo therapeutic results of CuMo_(2)S_(3)-PEG-Gd NCs exhibited that the PTT/PDT/CDT achieved a remarkably synergistic effect,which could efficiently inhibit the tumor growth.Thus,CuMo_(2)S_(3)-PEG-Gd NCs,which integrated imaging with multiple therapies,have a good potential as theranostic agent for tumor.
基金National Key Research and Development Plan(2017YFB0403000)National Science Fund for Distinguished Young Scholars(61725403)+6 种基金National Natural Science Foundation of China(61874118,61704171,61504083,61674161)CAS Pioneer Hundred Talents ProgramJilin Provincial Science&Technology Department(20180201026GX)Key Program of the International Partnership Program of CAS(181722KYSB20160015)Special Project for Inter-government Collaboration of the State Key Research and Development Program(2016YFE0118400)Youth Innovation Promotion Association of CASGuangdong Province Key Research and Development Plan(2019B010138002)。
文摘With the increasing demand for high integration and multi-color photodetection for both military and civilian applications, the research of multi-wavelength detectors has become a new research hotspot. However, current research has been mainly in visible dual-or multi-wavelength detectors, while integration of both visible light and ultraviolet(UV) dual-wavelength detectors has rarely been studied. In this work, large-scale and high-quality monolayer MoS2 was grown by the chemical vapor deposition method on transparent free-standing GaN substrate. Monolithic integration of MoS2-based visible detectors and GaN-based UV detectors was demonstrated using common semiconductor fabrication technologies such as photolithography, argon plasma etching, and metal deposition. High performance of a 280 nm and 405 nm dual-wavelength photodetector was realized.The responsivity of the UV detector reached 172.12 A/W, while that of the visible detector reached 17.5 A/W.Meanwhile, both photodetectors achieved high photocurrent gain, high external quantum efficiency, high normalized detection rate, and low noise equivalent power. Our study extends the future application of dual-wavelength detectors for image sensing and optical communication.
基金supported in part by Grants(to G.G.)from National Natural Science Foundation of China(Grant Nos.30470092 and 30530020)National Basic Research Program of China(973 Program)(Grant No.2006CB504302)of China.
文摘The zinc-finger antiviral protein(ZAP)is a host factor that specifically inhibits the replication of certain viruses,including murine leukemia virus,Sindbis virus and Ebola virus,by targeting the viral mRNAs for degradation.ZAP directly binds to the target viral mRNA and recruits the cellular RNA degradation machinery to degrade the RNA.No significant sequence similarity or obvious common motifs have been found in the so far identified target viral mRNAs.The minimum length of the target sequence is about 500 nt long.Short workable ZAP-binding RNAs should facilitate further studies on the ZAP-RNA interaction and characterization of such RNAs may provide some insights into the underlying mechanism.In this study,we used the SELEX method to isolate ZAP-binding RNA aptamers.After 21 rounds of selection,ZAP-binding aptamers were isolated.Sequence analysis revealed that they are G-rich RNAs with predicted stem-loop structures containing conserved“GGGUGG”and“GAGGG”motifs in the loop region.Insertion of the aptamer sequence into a luciferase reporter failed to render the reporter sensitive to ZAP.However,overexpression of the aptamers modestly but significantly reduced ZAP’s antiviral activity.Substitution of the conserved motifs of the aptamers significantly impaired their ZAP-binding ability and ZAP-antagonizing activity,suggesting that the RNA sequence is important for specific interaction between ZAP and the target RNA.The aptamers identified in this report should provide useful tools to further investigate the details of the interaction between ZAP and the target RNAs.
基金supported by the "State Key R&D Program" of China.(Nos.2017YFC0212400,2016YFC0202200)
文摘Peroxyacyl nitrates(PANs) are important secondary pollutants in ground-level atmosphere.Accurate prediction of atmospheric pollutant concentrations is crucial to guide effective precautions for before and during specific pollution events. In this study, four models based on the back-propagation(BP) artificial neural network(ANN) and multiple linear regression(MLR) methods were used to predict the hourly average PAN concentrations at Peking University, Beijing, in 2014. The model inputs were atmospheric pollutant data and meteorological parameters. Model 3 using a BP-ANN based on the original variables achieved the best prediction results among the four models, with a correlation coefficient(R) of 0.7089, mean bias error of -0.0043 ppb, mean absolute error of 0.4836?ppb, root mean squared error of 0.5320?ppb, and Willmott's index of agreement of 0.8214. Based on a comparison of the performance indices of the MLR and BP-ANN models, we concluded that the BP-ANN model was able to capture the highly non-linear relationships between PAN concentration and the conventional atmospheric pollutant and meteorological parameters,providing more accurate results than the traditional MLR models did, with a markedly higher goodness of R. The selected meteorological and atmospheric pollutant parameters described a sufficient amount of PAN variation, and thus provided satisfactory prediction results. More specifically, the BP-ANN model performed very well for capturing the variation pattern when PAN concentrations were low. The findings of this study address some of the existing knowledge gaps in this research field and provide a theoretical basis for future regional air pollution control.
基金supported by the National Science and Technology Major Project of China(No.2016ZX05024-003).
文摘The Penglai 9-1 oilfield is the largest granite buried-hill oilfield in China presently,genesis and evolution of the granite buried-hill reservoir is complex.Based on geochemical,geophysical,experimental simulation and other methods,and combined with field geological observation,genetic mechanism of the granite buried-hill reservoir of the Penglai 9-1 oilfield and its hydrocarbon accumulation mode were well investigated.Results showed that the granite was formed by magmatic intrusion along deep faults under intraplate breakup of North China Plate,it was the product of magmatic activities of Yanshan tectonic episode of Circum-Pacific Tectonic Region,and the intrusion time was 160e170 Ma of the Jurassic.Formation of the granite buried-hill reservoir was mainly controlled by the epigenic karstification and tectonic reconstruction,the Yanshanian weathering and denudation controlled macroscopic development characteristics of the granite buried-hill reservoir,and faults and joints formed by Cenozoic tectonic movement promoted modification of the granite buried-hill reservoir.Laterally,thickness of the granite buried-hill reservoir had a positive correlation with fracture density.Vertically,the granite rocks could be divided into five zones:soil zone,sandy zone,broken zone,fracture zone and base rock zone.The upper-middle part(sandy zone,broken zone,fracture zone)of the granite buried hill was the highquality favorable reservoir zone and the main oil-bearing interval.
基金financially supported by the National Natural Science Foundation of China(Nos.51706016,51506014)the China Postdoctoral Science Foundation(No.2017T100677)
文摘We report a simple method for fabricating all-solid-state micro-supercapacitors, utilizing laser writing technology. Porous graphene films with three-dimensional networks induced by laser from commercial polymer was acted as scaffold for loading MnO2, a typical pseudocapacitive materials. Using gel electrolyte, all-solid-state pseudocapacitive micro-supercapacitors were fabricated. Compare to traditional printing and lithography techniques produced micro-supercapacitors, the as-fabricated devices demonstrate high volumetric capacitances, good stability and low leakage current, indicating a scalable and facile approach for future energy storage devices in portable microelectronics.
基金supported by the American Cancer Society Inernal Reseatch Grant (to JZ)the National Cancer Institure Informatics Technology for Ccance Research U01 grant (Grant No. CA188547 to JZ and KH)+1 种基金the Indiana University Precision Health Initiative (to JZ and KH)the support from Indiana University Information Technologies and Advanced Biomedical IT Core
文摘Gene co-expression network(GCN)mining identifies gene modules with highly correlated expression profiles across samples/conditions.It enables researchers to discover latent gene/molecule interactions,identify novel gene functions,and extract molecular features from certain disease/condition groups,thus helping to identify disease bio-markers.However,there lacks an easy-to-use tool package for users to mine GCN modules that are relatively small in size with tightly connected genes that can be convenient for downstream gene set enrichment analysis,as well as modules that may share common members.To address this need,we developed an online GCN mining tool package:TSUNAMI(Tools SUite for Network Analysis and MIning).TSUNAMI incorporates our state-of-the-art lmQCM algorithm to mine GCN modules for both public and user-input data(microarray,RNA-seq,or any other numerical omics data),and then performs downstream gene set enrichment analysis for the identified modules.It has several features and advantages:1)a user-friendly interface and real-time co-expression network mining through a web server;2)direct access and search of NCBI Gene Expression Omnibus(GEO)and The Cancer Genome Atlas(TCGA)databases,as well as user-input gene ex-pression matrices for GCN module mining;3)multiple co-expression analysis tools to choose from,all of which are highly flexible in regards to parameter selection options;4)identified GCN modules are summarized to eigengenes,which are convenient for users to check their correlation with other clinical traits;5)integrated downstream Enrichr enrichment analysis and links to other gene set enrichment tools;and 6)visualization of gene loci by Circos plot in any step of the process.The web service is freely accessible through URL:https://biolearns.medicine.iu.edu/.Source code is available at https://github.com/huangzhii/TSUNAMI/.
基金supported financially by the National Natural Science Foundation of China[No.11532004,11832008]Innovation and Attracting Talents Program for College and University(“111”Project)[No.B06023]。
文摘The presence of excessive reactive oxygen species(ROS)after injuries to the enthesis could lead to cellular oxidative damage,high inflammatory response,chronic inflammation,and limited fibrochondral inductivity,making tissue repair and functional recovery difficult.Here,a multifunctional silk fibroin nanofiber modified with polydopamine and kartogenin was designed and fabricated to not only effectively reduce inflammation by scavenging ROS in the early stage of the enthesis healing but also enhance fibrocartilage formation with fibrochondrogenic induction in the later stages.The in vitro results confirmed the antioxidant capability and the fibrochondral inductivity of the functionalized nanofibers.In vivo studies showed that the multifunctional nanofiber can significantly improve the integration of tendon-bone and accelerate the regeneration of interface tissue,resulting in an excellent biomechanical property.Thus,the incorporation of antioxidant and bio-active molecules into extracellular matrix-like biomaterials in interface tissue engineering provides an integrative approach that facilitates damaged tissue regeneration and functional recovery,thereby improving the clinical outcome of the engineered tissue.