This article presents the design of a new implantable axial-flow blood pump. The special feature of the flow channel inside the blood pump is that the blood is driven by a big-small tandem impeller installed in the in...This article presents the design of a new implantable axial-flow blood pump. The special feature of the flow channel inside the blood pump is that the blood is driven by a big-small tandem impeller installed in the inner hole of the cylinder magnet of a brushless direct current motor. The inner hole makes the main flow channel possible, while the gap between the inner end of the stator and the outer end of the cylinder magnet gives the shape of the tributary flow channel. There is no motor magnet inside the main flow channel, therefore, more blood can pass through it. The gap of the tributary flow channel is very small, but the blood flow in it is not blocked. Thus, the efficiency is increased and the volume and weight of blood pump can be reduced greatly. The outer diameter, length and weight of the manufactured implantable axial-flow blood pump are 29.6 mm, 76 mm and 158 g, respectively. The impeller spins at the speed of 9000 rpm and can generate a pressure head of 100 mmHg and a flow rate of 8 L/rain. In an animal experiment, the blood pump has been successfully applied as a Ventricular Assist Device (VAD) in the chest of a small cow. Besides a mathematical model is established to simulate the flow inside an axial-flow blood pump of implantable VAD. The numerical studies on the performance of the implantable axial-flow blood pump are carried out by combining this mathematical model and the Fluent software. The numerical results agree well with those of experiments, with the maximum error less than 10%.展开更多
Spatio-temporal characteristics of the wall-bounded turbulent mixing layer flow over an open step and a square-edged rib were extensively studied in a low-speed wind tunnel. Simultaneous measurements of wall-pressure ...Spatio-temporal characteristics of the wall-bounded turbulent mixing layer flow over an open step and a square-edged rib were extensively studied in a low-speed wind tunnel. Simultaneous measurements of wall-pressure fluctuations and velocity measurements were performed by using microphone array and X-wire/split fim, respectively.展开更多
This paper presents an effective method for computing the internal and external viscous flow field around the ducted propulsor behind an axisymmetric they by using a new Navier-Stokes equations solver with primitive v...This paper presents an effective method for computing the internal and external viscous flow field around the ducted propulsor behind an axisymmetric they by using a new Navier-Stokes equations solver with primitive variable continuity equation formulation. In the present numerical method, the calculation equation for pressure with well-defined coefficient,which form is similar to the artificial compressibility method, is developed. A semi-staggered grid system is adopted. Not only the advantage of staggered grid system can be retained but the boundary conditions on the inner and outer surface of the duct can be also carried out easily. By using a special grid system and the programming technique for implementing the jump boundary condition on the duct surfaces, the internal and external viscous flow field around the ducted propulsor behind the axisymmetric they may be calculated integrally in an unified numbered grid system. Some configurations are calculated and compared with experimental date and numerical results of other methods. Illustrative calculations are also presented for a stern of axisymmetric body with the backstep fitted a duct to illustrate the capability of the present method. Beside that, the effect of axial distribution of they force is considered and discussed in order to extend the application range of the present method.展开更多
基金supported by the National High Technology Research and Development program of China (863 Program, Grant No. 2007AA02Z439)The Program for Outstanding Medical Academic Leader of Shanghai
文摘This article presents the design of a new implantable axial-flow blood pump. The special feature of the flow channel inside the blood pump is that the blood is driven by a big-small tandem impeller installed in the inner hole of the cylinder magnet of a brushless direct current motor. The inner hole makes the main flow channel possible, while the gap between the inner end of the stator and the outer end of the cylinder magnet gives the shape of the tributary flow channel. There is no motor magnet inside the main flow channel, therefore, more blood can pass through it. The gap of the tributary flow channel is very small, but the blood flow in it is not blocked. Thus, the efficiency is increased and the volume and weight of blood pump can be reduced greatly. The outer diameter, length and weight of the manufactured implantable axial-flow blood pump are 29.6 mm, 76 mm and 158 g, respectively. The impeller spins at the speed of 9000 rpm and can generate a pressure head of 100 mmHg and a flow rate of 8 L/rain. In an animal experiment, the blood pump has been successfully applied as a Ventricular Assist Device (VAD) in the chest of a small cow. Besides a mathematical model is established to simulate the flow inside an axial-flow blood pump of implantable VAD. The numerical studies on the performance of the implantable axial-flow blood pump are carried out by combining this mathematical model and the Fluent software. The numerical results agree well with those of experiments, with the maximum error less than 10%.
文摘Spatio-temporal characteristics of the wall-bounded turbulent mixing layer flow over an open step and a square-edged rib were extensively studied in a low-speed wind tunnel. Simultaneous measurements of wall-pressure fluctuations and velocity measurements were performed by using microphone array and X-wire/split fim, respectively.
文摘This paper presents an effective method for computing the internal and external viscous flow field around the ducted propulsor behind an axisymmetric they by using a new Navier-Stokes equations solver with primitive variable continuity equation formulation. In the present numerical method, the calculation equation for pressure with well-defined coefficient,which form is similar to the artificial compressibility method, is developed. A semi-staggered grid system is adopted. Not only the advantage of staggered grid system can be retained but the boundary conditions on the inner and outer surface of the duct can be also carried out easily. By using a special grid system and the programming technique for implementing the jump boundary condition on the duct surfaces, the internal and external viscous flow field around the ducted propulsor behind the axisymmetric they may be calculated integrally in an unified numbered grid system. Some configurations are calculated and compared with experimental date and numerical results of other methods. Illustrative calculations are also presented for a stern of axisymmetric body with the backstep fitted a duct to illustrate the capability of the present method. Beside that, the effect of axial distribution of they force is considered and discussed in order to extend the application range of the present method.