Bauhinia faberi via.Microphylla(BFM)is an important tree species for vegetation restoration in the dry valley of southwestern China.However,there were few studies on the application of arbuscular mycorrhizal fungi(AMF...Bauhinia faberi via.Microphylla(BFM)is an important tree species for vegetation restoration in the dry valley of southwestern China.However,there were few studies on the application of arbuscular mycorrhizal fungi(AMF)in improving the drought adaptation of BFM.In order to investigate the response of BFM to water stress(WS),we tested four inoculation treatments((no AMF,Control),Glomus mosseae(GM),Glomus intraradices(GI),Glomus mosseae+Glomus intraradices(GMI))in pots,experimented under three field water holding capacity(WHC)of 70%,50%and 30%.The changes of seedling survival rate(SR),AMF relative root length colonization rate(Col),growth,photosynthetic parameters,water status and leaf nutrients were examined.The results showed that under 30%WHC drought conditions,SR with dual inoculation of AMF was not higher than with single inoculation of GM,suggesting that increasing the diversity of AMF did not definitely improve plant SR,and that the species of inoculated AMF might have an important impact on SR.The sensitivity of dual inoculated Col to water stress was lower than that of single inoculation,which was more favorable for dual inoculated BFM seedlings adapting to drought environment.The overall drought resistance ability(D)also showed that dual inoculation of AMF improved plant drought adaptation compared with single inoculation,which was related to the higher Col of dual inoculated AMF.This study is of practical importance to promote vegetation restoration in arid areas in a cost-effective and environmentally friendly manner.展开更多
The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few all...The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few allometric equations exist for accurately estimating biomass and carbon budgets of this forest. In the present study, allometric equations,both species-specific and generic, were developed relating component biomass(DW) to diameter at breast height(DBH) and tree height(H) for six most common tree species in Tibetan forest. The 6 species were Abies georgei Orr., Picea spinulosa(Griff.)Henry, Pinus densata Mast., Pinus yunnanensis Franch., Cypresses funebris Endl. and Quercus semecarpifilia Smith.. The results showed that, both DBH-only and DBH2 H based species-specific equations showed a significant fit(P<0.05) for all tree species and biomass components. The DBH-only equations explained more than 80% variability of the component biomass and total biomass, adding H as a second independent variable increased the goodness of fit, while incorporating H into the term DBH2 H decreased the goodness of fit. However, not all DBH-H combined equations showed a significant fit(P<0.05) for all tree species and biomass components. Hence, the suggested species-specific allometric equations for the six most common tree species are of the form ln(DW) = c + αln(DBH). The generalized equations of mixed coniferous component biomass against DBH, DBH2 H and DBH-H also showed a significant fit(P<0.05) for all biomass components. However, due to significant species effect, the relative errors of the estimates were very high. Hence, generalized equations should only be used when there are too many different tree species, or there is no species-specific model of the same species or similar growth form in adjacent area.展开更多
基金supported by the National Key Research and Development Program of China(2017YFC0505104)"135 Project"of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu,China(SDS–135–1707)。
文摘Bauhinia faberi via.Microphylla(BFM)is an important tree species for vegetation restoration in the dry valley of southwestern China.However,there were few studies on the application of arbuscular mycorrhizal fungi(AMF)in improving the drought adaptation of BFM.In order to investigate the response of BFM to water stress(WS),we tested four inoculation treatments((no AMF,Control),Glomus mosseae(GM),Glomus intraradices(GI),Glomus mosseae+Glomus intraradices(GMI))in pots,experimented under three field water holding capacity(WHC)of 70%,50%and 30%.The changes of seedling survival rate(SR),AMF relative root length colonization rate(Col),growth,photosynthetic parameters,water status and leaf nutrients were examined.The results showed that under 30%WHC drought conditions,SR with dual inoculation of AMF was not higher than with single inoculation of GM,suggesting that increasing the diversity of AMF did not definitely improve plant SR,and that the species of inoculated AMF might have an important impact on SR.The sensitivity of dual inoculated Col to water stress was lower than that of single inoculation,which was more favorable for dual inoculated BFM seedlings adapting to drought environment.The overall drought resistance ability(D)also showed that dual inoculation of AMF improved plant drought adaptation compared with single inoculation,which was related to the higher Col of dual inoculated AMF.This study is of practical importance to promote vegetation restoration in arid areas in a cost-effective and environmentally friendly manner.
基金supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA05050207)the National Natural Science Foundation of China (Grant No. 31300416)
文摘The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few allometric equations exist for accurately estimating biomass and carbon budgets of this forest. In the present study, allometric equations,both species-specific and generic, were developed relating component biomass(DW) to diameter at breast height(DBH) and tree height(H) for six most common tree species in Tibetan forest. The 6 species were Abies georgei Orr., Picea spinulosa(Griff.)Henry, Pinus densata Mast., Pinus yunnanensis Franch., Cypresses funebris Endl. and Quercus semecarpifilia Smith.. The results showed that, both DBH-only and DBH2 H based species-specific equations showed a significant fit(P<0.05) for all tree species and biomass components. The DBH-only equations explained more than 80% variability of the component biomass and total biomass, adding H as a second independent variable increased the goodness of fit, while incorporating H into the term DBH2 H decreased the goodness of fit. However, not all DBH-H combined equations showed a significant fit(P<0.05) for all tree species and biomass components. Hence, the suggested species-specific allometric equations for the six most common tree species are of the form ln(DW) = c + αln(DBH). The generalized equations of mixed coniferous component biomass against DBH, DBH2 H and DBH-H also showed a significant fit(P<0.05) for all biomass components. However, due to significant species effect, the relative errors of the estimates were very high. Hence, generalized equations should only be used when there are too many different tree species, or there is no species-specific model of the same species or similar growth form in adjacent area.