In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing de...In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.展开更多
Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartme...Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties.Herein,we designed and synthesized a catalytically active,PTC gold(Au)@polydopamine(PDA)nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template.The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique.They feature permeable shells with tunable shell thickness.Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems.Notably,a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated,which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction.The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.展开更多
Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this ...Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-tuned by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis.展开更多
基金the China and Germany Postdoctoral Exchange Program for this research in Helmholtz-Zentrum Berlin für Materialien und Energiethe Postdoctoral Science Foundation of China (2017M610324)NSFC (21704040)
文摘In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.
基金support from the DFG through SFB 951 Hybrid Inorganic/Organic Systems for OptoElectronics(HIOS)funding by the European Research Council(ERC)Consolidator Grant with Project Number 646659-NANOREACTORthe Joint Lab for Structural Research at the Integrative Research Institute for the Sciences(IRIS Adlershof).
文摘Photothermal conversion(PTC)nanostructures have great potential for applications in many fields,and therefore,they have attracted tremendous attention.However,the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties.Herein,we designed and synthesized a catalytically active,PTC gold(Au)@polydopamine(PDA)nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template.The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique.They feature permeable shells with tunable shell thickness.Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems.Notably,a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated,which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction.The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.
基金We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51721002, 21504016, and 91527305). We thank Joint Lab for Structural Research at the Integrative Research Institute for the Sciences (IRIS Adlershof, Berlin) for Cryo-TEM imaging.
文摘Recently, we proposed a new strategy to construct artificial plant protein assemblies, which were induced by adding a small molecule, based on dual supramolecular interactions. In this paper, we further explored this method by employing Human Galectin-1 (Gal-1) as a building block to form self-assembled microribbons. Two non-covalent interactions, including lactose-lectin binding and dimerization of Rhodamine B (RhB), induced by the small molecule ligand addition, were involved in the crosslinking of the animal protein, resulting in the formation of assemblies. By using transmission electron microscopy (TEM), cryo-electron microscopy (cryo-EM), and three-dimensional (3D) tomographic analysis, we arrived at a possible mechanistic model for the microribbon formation. Furthermore, the morphology of protein assemblies could be fine-tuned by varying the incubation time, the protein/ligand ratio, and the chemical structures of ligands. Interestingly, the formation of protein microribbons successfully inhibited Gal-1 induced T-cell agglutination and apoptosis. This is because the multivalent and dynamic interactions in protein assemblies compete with the binding between Gal-1 and the glycans on cell surfaces, which suppresses the function of Gal-1 in promotion of tumor progression and metastasis.