The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
The human immunodeficiency virus-1(HIV-1)envelope protein gp120 is the major contributor to the pathogenesis of HIVassociated neurocognitive disorder(HAND).Neuroinflammation plays a pivotal role in gp120-induced neuro...The human immunodeficiency virus-1(HIV-1)envelope protein gp120 is the major contributor to the pathogenesis of HIVassociated neurocognitive disorder(HAND).Neuroinflammation plays a pivotal role in gp120-induced neuropathology,but how gp120 triggers neuroinflammatory processes and subsequent neuronal death remains unknown.Here,we provide evidence that NLRP3 is required for gp120-induced neuroinflammation and neuropathy.Our results showed that gp120-induced NLRP3-dependent pyroptosis and IL-1βproduction in microglia.Inhibition of microglial NLRP3 inflammasome activation alleviated gp120-mediated neuroinflammatory factor release and neuronal injury.Importantly,we showed that chronic administration of MCC950,a novel selective NLRP3 inhibitor,to gp120 transgenic mice not only attenuated neuroinflammation and neuronal death but also promoted neuronal regeneration and restored the impaired neurocognitive function.In conclusion,our data revealed that the NLRP3 inflammasome is important for gp120-induced neuroinflammation and neuropathology and suggest that NLRP3 is a potential novel target for the treatment of HAND.展开更多
Dye desalination is a challenge in the treatment of textile wastewater with high salt concentration. It is imperative to develop salt resistance membrane that is from sustainable materials to effectively treat dye/sal...Dye desalination is a challenge in the treatment of textile wastewater with high salt concentration. It is imperative to develop salt resistance membrane that is from sustainable materials to effectively treat dye/salt mixtures. And most polymer membrane materials are non-renewable petrochemical resources.In this paper, a green hydrogel membrane(CMCS-OA-Na Alg) was prepared by non-metallic ions of oxalic acid(OA) cross-linking of two natural macromolecules of sodium alginate(Na Alg) and carboxymethyl chitosan(CMCS). The membrane showed excellent anti-swelling at high salt concentration(swelling rate less than 8.0% in 10.0 wt% Na Cl solution) and good anti-fouling performance. The membrane exhibited a rejection higher than 95.0% for dyes(bright blue, direct black, direct red, and Congo red) and lower than7.0% for Na Cl, which can achieve better dye/Na Cl separation performance. This study provides a promising membrane material for high salt textile wastewater treatment only using water and carbohydrates as raw materials without any organic solvents.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
基金This project was financially supported by the Key Program of the Natural Science Foundation of Guangdong,China(No.2017B030311017)the National Natural Science Foundation of China(No.81370740)+1 种基金the Program of the Natural Science Foundation of Guangdong,China(No.2018A030313845)the China Postdoctoral Science Foundation(No.2018M633076).
文摘The human immunodeficiency virus-1(HIV-1)envelope protein gp120 is the major contributor to the pathogenesis of HIVassociated neurocognitive disorder(HAND).Neuroinflammation plays a pivotal role in gp120-induced neuropathology,but how gp120 triggers neuroinflammatory processes and subsequent neuronal death remains unknown.Here,we provide evidence that NLRP3 is required for gp120-induced neuroinflammation and neuropathy.Our results showed that gp120-induced NLRP3-dependent pyroptosis and IL-1βproduction in microglia.Inhibition of microglial NLRP3 inflammasome activation alleviated gp120-mediated neuroinflammatory factor release and neuronal injury.Importantly,we showed that chronic administration of MCC950,a novel selective NLRP3 inhibitor,to gp120 transgenic mice not only attenuated neuroinflammation and neuronal death but also promoted neuronal regeneration and restored the impaired neurocognitive function.In conclusion,our data revealed that the NLRP3 inflammasome is important for gp120-induced neuroinflammation and neuropathology and suggest that NLRP3 is a potential novel target for the treatment of HAND.
基金supported by the National Natural Science Foundation of China (Nos. 51708407 and 51803150)the Science and Technology Plans of Tianjin (Nos. 19JCQNJC02900, 18ZXJMTG00120,20JCYBJC00120)。
文摘Dye desalination is a challenge in the treatment of textile wastewater with high salt concentration. It is imperative to develop salt resistance membrane that is from sustainable materials to effectively treat dye/salt mixtures. And most polymer membrane materials are non-renewable petrochemical resources.In this paper, a green hydrogel membrane(CMCS-OA-Na Alg) was prepared by non-metallic ions of oxalic acid(OA) cross-linking of two natural macromolecules of sodium alginate(Na Alg) and carboxymethyl chitosan(CMCS). The membrane showed excellent anti-swelling at high salt concentration(swelling rate less than 8.0% in 10.0 wt% Na Cl solution) and good anti-fouling performance. The membrane exhibited a rejection higher than 95.0% for dyes(bright blue, direct black, direct red, and Congo red) and lower than7.0% for Na Cl, which can achieve better dye/Na Cl separation performance. This study provides a promising membrane material for high salt textile wastewater treatment only using water and carbohydrates as raw materials without any organic solvents.