随着海平面上升和人类活动加剧,潮滩正面临着严重威胁,掌握其形态变化规律是研究潮滩系统对外在条件响应的直接手段。以江苏斗龙港潮滩为研究对象,利用无人机倾斜摄影测量技术,结合运动恢复结构(Structure from Motion,SfM)算法,重建潮...随着海平面上升和人类活动加剧,潮滩正面临着严重威胁,掌握其形态变化规律是研究潮滩系统对外在条件响应的直接手段。以江苏斗龙港潮滩为研究对象,利用无人机倾斜摄影测量技术,结合运动恢复结构(Structure from Motion,SfM)算法,重建潮滩三维点云,生成数字高程模型和正射影像,分析潮滩滩面及潮沟系统年内变化规律。研究结果表明:潮滩高程测量精度优于9 cm,水平精度优于2 cm;高程年内变化较大,变幅高达±0.5 m;潮沟短历时变化剧烈,无明显季节性变化特征;潮沟发育过程中,宽深比范围为10~25。无人机技术不仅可以监测粉砂淤泥质潮滩滩面变化趋势,还可以观测到卫星难以捕获的中小型潮沟短历时发育过程,可为监测河口海岸短周期动力地貌过程提供有力的技术支持。展开更多
Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. Th...Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.展开更多
Since the 1970s, remote sensing images have provided new information for the delineation and analysis of coastline changes, especially focusing on the short timescale changes. This paper, based on the Landsat MSS imag...Since the 1970s, remote sensing images have provided new information for the delineation and analysis of coastline changes, especially focusing on the short timescale changes. This paper, based on the Landsat MSS imagery, focuses on the coastline evolution of Yancheng, northern Jiangsu, China since the mid-Holocene. A zebra stripe image, which could reveal the ancient coastal evolution of Yancheng, was extracted from a Landsat MSS image. Based on the extracted black-white stripes, 19 surface sediment samples were recovered and analyzed to recognize the sedimentary characteristics of these stripes. It shows that most sand and silty sand samples appear on the white stripes, while silt and silty clay samples are on the black stripes. Sandy and muddy sediments present an alternating distri- bution pattern on the Yancheng coastal plain. A historical coastline map was drawn according to the previous research achievements of the paleo-coastal sand barriers and paleo-coastlines, and was superimposed on the zebra stripe image. The trend of the extracted zebra stripes is consistent with the historical coastlines, and it should be the symbol of the Yancheng coastline evolution. On the basis of ten sets of black-white stripes and previous research results, we divided the progression of Yancheng coastal evolution into three stages (i.e., the early stable stage (6500 a BP-AD 1128), the rapid deposition stage (AD 1128-1855) and the adjustment stage (AD 1855-present)). Ten sets of black-white stripes were identified as the characteristic pattern of the coastline evolution on the Yancheng coastal plain.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50779015)
文摘Recent research on short-term topographic change in the Yangtze Estuary channel under storm surge conditions is briefly summarized. The mild-slope, Boussinesq and action balance equations are compared and analyzed. The action balance equation, SWAN, was used as a wave numerical model to forecast strong storm waves in the Yangtze Estuary. The spherical coordinate system and source terms used in the equation are described in this paper. The significant wave height and the wave orbital motion velocity near the bottom of the channel during 20 m/s winds in the EES direction were simulated, and the model was calibrated with observation data of winds and waves generated by Tropical Cyclone 9912. The distribution of critical velocity for incipient motion along the bottom was computed according to the threshold velocity formula for bottom sediment. The mechanism of rapid deposition is analyzed based on the difference between the root-mean-square value of the near-bottom wave orbital motion velocity and the bottom critical tractive velocity. The results show that a large amount of bottom sediments from Hengsha Shoal and Jiuduan Shoal are lifted into the water body when 20 m/s wind is blowing in the EES direction. Some of the sediments may enter the channel with the cross-channel current, causing serious rapid deposition. Finally, the tendency of the storm to induce rapid deposition in the Yangtze Estuary channel zone is analyzed.
基金National Basic Research Program of China (973 Program), No.2010CB429001 Comprehensive Investigation and Assessment in Jiangsu Offshore Area, No.JS-908-01-02+4 种基金 National Key Technologies Research and Development Program of China, No.2012BAB03B00 Special Fund for Marine Scientific Research in the Public Interest, No.201005006-3 National Natural Science Foundation of China, No.51179067 Graduate Student Research and Innovation Project of Jiangsu General Higher Learning Institution, No.CXLX 12_0256 Natural Science Foundation of Jiangsu Province, No.BK2012414
文摘Since the 1970s, remote sensing images have provided new information for the delineation and analysis of coastline changes, especially focusing on the short timescale changes. This paper, based on the Landsat MSS imagery, focuses on the coastline evolution of Yancheng, northern Jiangsu, China since the mid-Holocene. A zebra stripe image, which could reveal the ancient coastal evolution of Yancheng, was extracted from a Landsat MSS image. Based on the extracted black-white stripes, 19 surface sediment samples were recovered and analyzed to recognize the sedimentary characteristics of these stripes. It shows that most sand and silty sand samples appear on the white stripes, while silt and silty clay samples are on the black stripes. Sandy and muddy sediments present an alternating distri- bution pattern on the Yancheng coastal plain. A historical coastline map was drawn according to the previous research achievements of the paleo-coastal sand barriers and paleo-coastlines, and was superimposed on the zebra stripe image. The trend of the extracted zebra stripes is consistent with the historical coastlines, and it should be the symbol of the Yancheng coastline evolution. On the basis of ten sets of black-white stripes and previous research results, we divided the progression of Yancheng coastal evolution into three stages (i.e., the early stable stage (6500 a BP-AD 1128), the rapid deposition stage (AD 1128-1855) and the adjustment stage (AD 1855-present)). Ten sets of black-white stripes were identified as the characteristic pattern of the coastline evolution on the Yancheng coastal plain.