With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in differe...With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in different scenarios,and the phenomenon of diminishing marginal benefits of energy storage is becoming more apparent.Therefore,themulti-dimensional value evolution trend of energy storage has become a key issue.This study selects indicators from three dimensions of energy storage:low-carbon emission reduction,smoothing wind and solar power fluctuations,and saving generation costs,quantifying the economic,environmental,and technical values of energy storage.This forms a quantitative evaluation system for energy storage value.By comparing the calculated system values under different energy storage capacities,the marginal value evolution trend of energy storage is obtained.Meanwhile,considering factors such as the utilization rate of renewable energy,the change in energy storage value under different scenarios is analyzed.The results show that the value of long-duration energy storage is significantly affected by the energy storage capacity.Specifically,when the charge-discharge efficiency of longduration energy storage reaches 0.6 or above,the system value increases significantly.Additionally,appropriately reducing the cost of energy storage capacity also helps to improve its system value.展开更多
Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate ener...Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors.However,further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen(P2H)technology,focusing on participating in combined carbon-electricity market transactions.This study introduces an innovative Electro-Hydrogen Regional Energy System(EHRES)in this context.This system integrates renewable energy sources,a P2H system,cogeneration units,and energy storage devices.The core purpose of this integration is to optimize renewable energy utilization and minimize carbon emissions.This study aims to formulate an optimal operational strategy for EHRES,enabling its dynamic engagement in carbon-electricity market transactions.The initial phase entails establishing the technological framework of the electricity-hydrogen coupling system integrated with P2H.Subsequently,an analysis is conducted to examine the operational mode of EHRES as it participates in carbon-electricity market transactions.Additionally,the system scheduling model includes a stepped carbon trading price mechanism,considering the combined heat and power generation characteristics of the Hydrogen Fuel Cell(HFC).This facilitates the establishment of an optimal operational model for EHRES,aiming to minimize the overall operating cost.The simulation example illustrates that the coordinated operation of EHRES in carbon-electricity market transactions holds the potential to improve renewable energy utilization and reduce the overall system cost.This result carries significant implications for attaining advantages in both low-carbon and economic aspects.展开更多
As the Chinese government proposes ambitious plans to promote low-carbon transition,energy storage will play a pivotal role in China’s future power system.However,due to the lack of a mature electricity market enviro...As the Chinese government proposes ambitious plans to promote low-carbon transition,energy storage will play a pivotal role in China’s future power system.However,due to the lack of a mature electricity market environment and corresponding mechanisms,current energy storage in China faces problems such as unclear operational models,insufficient cost recovery mechanisms,and a single investment entity,making it difficult to support the rapid development of the energy storage industry.In contrast,European and American countries have already embarked on certain practices in energy storage operation models.Through exploration of key issues such as investment entities,market participation forms,and cost recovery channels in both front and back markets,a wealth of mature experiences has been accumulated.Therefore,this paper first summarizes the existing practices of energy storage operation models in North America,Europe,and Australia’s electricity markets separately from front and back markets,finding that perfect market mechanisms and reasonable subsidy policies are among the main drivers for promoting the rapid development of energy storage markets.Subsequently,combined with the actual development of China’s electricity market,it explores three key issues affecting the construction of costsharing mechanisms for energy storage under market conditions:Market participation forms,investment and operation modes,and cost recovery mechanisms.Finally,in line with the development expectations of China’s future electricitymarket,suggestions are proposed fromfour aspects:Market environment construction,electricity price formation mechanism,cost sharing path,and policy subsidy mechanism,to promote the healthy and rapid development of China’s energy storage industry.展开更多
In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the...In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the information system’s role in fault diagnosis,remote control of equipment maintenance and automatic output adjustment of generator restoration,a cyber-physical coupling model is proposed.On this basis,a collaborative restoration model of power transmission system is established by studying interactions among maintenance schedule paths,information system operation,and power system operation.Based on power flow linearization and the large M-ε method,the above model is transformed into a mixed integer linear programming model,whose computational burden is reduced further by the clustering algorithm.According to the parameters of IEEE39 New England system,the geographic wiring diagram of the cyber-physical system is established.Simulation results show the proposed restoration strategy can consider the support function of the information system and space-time coordination of equipment maintenance at both sides comprehensively to speed up load recovery progress.展开更多
With an increase in the electrification of end-use sectors,various resources on the demand side provide great flexibility potential for system operation,which also leads to problems such as the strong randomness of po...With an increase in the electrification of end-use sectors,various resources on the demand side provide great flexibility potential for system operation,which also leads to problems such as the strong randomness of power consumption behavior,the low utilization rate of flexible resources,and difficulties in cost recovery.With the core idea of“access over ownership”,the concept of the sharing economy has gained substantial popularity in the local energy market in recent years.Thus,we provide an overview of the potential market design for the sharing economy in local energy markets(LEMs)and conduct a detailed review of research related to local energy sharing,enabling technologies,and potential practices.This paper can provide a useful reference and insights for the activation of demand-side flexibility potential.Hopefully,this paper can also provide novel insights into the development and further integration of the sharing economy in LEMs.展开更多
The increasing penetration of plug-in electric ve- hicles (PEVs) has highlighted the importance of coordinating ubiquitous distributed energy resources (DERs) via the internet of things (IoT).With the help of vehicle-...The increasing penetration of plug-in electric ve- hicles (PEVs) has highlighted the importance of coordinating ubiquitous distributed energy resources (DERs) via the internet of things (IoT).With the help of vehicle-to-grid (V2G) technology, PEVs can be aggregated to behave as a storage system, yielding both economic and environmental benefits. In this paper, we propose an optimal bidding framework for a V2G-enabled re- gional energy internet (REI) to participate in day-ahead markets considering carbon trading. The REI operator aims to maximize the net profits from day-ahead markets while anticipating real- time adjustments. A detailed battery model is developed to depict the charging and discharging capability of V2G-enabled PEVs. A two-stage stochastic optimization model is formulated to schedule the operation of PEV fleets against various sources of uncertainties, e.g., the arrival and departure time of PEVs, solar power and real-time prices. Case studies undertaken based on realistic datasets demonstrate that the coordination of the V2G- enabled PEVs and other DERs can facilitate the accommodation of renewable energy, thus improving the REI’s revenues in energy and carbon markets.展开更多
基金supported financially by Thematic Project of the State Grid Liaoning Electric Power Company Limited Economic Research Institute under Grant SGLNJY00GHJS2310109.
文摘With the continuous expansion of the scale of renewable energy installation,the demand for energy storage has increased significantly.However,there are significant differences in the value of energy storage in different scenarios,and the phenomenon of diminishing marginal benefits of energy storage is becoming more apparent.Therefore,themulti-dimensional value evolution trend of energy storage has become a key issue.This study selects indicators from three dimensions of energy storage:low-carbon emission reduction,smoothing wind and solar power fluctuations,and saving generation costs,quantifying the economic,environmental,and technical values of energy storage.This forms a quantitative evaluation system for energy storage value.By comparing the calculated system values under different energy storage capacities,the marginal value evolution trend of energy storage is obtained.Meanwhile,considering factors such as the utilization rate of renewable energy,the change in energy storage value under different scenarios is analyzed.The results show that the value of long-duration energy storage is significantly affected by the energy storage capacity.Specifically,when the charge-discharge efficiency of longduration energy storage reaches 0.6 or above,the system value increases significantly.Additionally,appropriately reducing the cost of energy storage capacity also helps to improve its system value.
基金supported financially by InnerMongoliaKey Lab of Electrical Power Conversion,Transmission,and Control under Grant IMEECTC2022001the S&TMajor Project of Inner Mongolia Autonomous Region in China(2021ZD0040).
文摘Given the“double carbon”objective and the drive toward low-carbon power,investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors.However,further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen(P2H)technology,focusing on participating in combined carbon-electricity market transactions.This study introduces an innovative Electro-Hydrogen Regional Energy System(EHRES)in this context.This system integrates renewable energy sources,a P2H system,cogeneration units,and energy storage devices.The core purpose of this integration is to optimize renewable energy utilization and minimize carbon emissions.This study aims to formulate an optimal operational strategy for EHRES,enabling its dynamic engagement in carbon-electricity market transactions.The initial phase entails establishing the technological framework of the electricity-hydrogen coupling system integrated with P2H.Subsequently,an analysis is conducted to examine the operational mode of EHRES as it participates in carbon-electricity market transactions.Additionally,the system scheduling model includes a stepped carbon trading price mechanism,considering the combined heat and power generation characteristics of the Hydrogen Fuel Cell(HFC).This facilitates the establishment of an optimal operational model for EHRES,aiming to minimize the overall operating cost.The simulation example illustrates that the coordinated operation of EHRES in carbon-electricity market transactions holds the potential to improve renewable energy utilization and reduce the overall system cost.This result carries significant implications for attaining advantages in both low-carbon and economic aspects.
基金supported financially by State Grid Henan Electric Power Company Technology Project“Research on System Cost Impact Assessment and Sharing Mechanism under the Rapid Development of Distributed Photovoltaics”(Grant Number:5217L0220021).
文摘As the Chinese government proposes ambitious plans to promote low-carbon transition,energy storage will play a pivotal role in China’s future power system.However,due to the lack of a mature electricity market environment and corresponding mechanisms,current energy storage in China faces problems such as unclear operational models,insufficient cost recovery mechanisms,and a single investment entity,making it difficult to support the rapid development of the energy storage industry.In contrast,European and American countries have already embarked on certain practices in energy storage operation models.Through exploration of key issues such as investment entities,market participation forms,and cost recovery channels in both front and back markets,a wealth of mature experiences has been accumulated.Therefore,this paper first summarizes the existing practices of energy storage operation models in North America,Europe,and Australia’s electricity markets separately from front and back markets,finding that perfect market mechanisms and reasonable subsidy policies are among the main drivers for promoting the rapid development of energy storage markets.Subsequently,combined with the actual development of China’s electricity market,it explores three key issues affecting the construction of costsharing mechanisms for energy storage under market conditions:Market participation forms,investment and operation modes,and cost recovery mechanisms.Finally,in line with the development expectations of China’s future electricitymarket,suggestions are proposed fromfour aspects:Market environment construction,electricity price formation mechanism,cost sharing path,and policy subsidy mechanism,to promote the healthy and rapid development of China’s energy storage industry.
基金supported by the Science and Technology Program of North China Branch of SGCC under Grant SGTYHT/19-JS-218.
文摘In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the information system’s role in fault diagnosis,remote control of equipment maintenance and automatic output adjustment of generator restoration,a cyber-physical coupling model is proposed.On this basis,a collaborative restoration model of power transmission system is established by studying interactions among maintenance schedule paths,information system operation,and power system operation.Based on power flow linearization and the large M-ε method,the above model is transformed into a mixed integer linear programming model,whose computational burden is reduced further by the clustering algorithm.According to the parameters of IEEE39 New England system,the geographic wiring diagram of the cyber-physical system is established.Simulation results show the proposed restoration strategy can consider the support function of the information system and space-time coordination of equipment maintenance at both sides comprehensively to speed up load recovery progress.
文摘With an increase in the electrification of end-use sectors,various resources on the demand side provide great flexibility potential for system operation,which also leads to problems such as the strong randomness of power consumption behavior,the low utilization rate of flexible resources,and difficulties in cost recovery.With the core idea of“access over ownership”,the concept of the sharing economy has gained substantial popularity in the local energy market in recent years.Thus,we provide an overview of the potential market design for the sharing economy in local energy markets(LEMs)and conduct a detailed review of research related to local energy sharing,enabling technologies,and potential practices.This paper can provide a useful reference and insights for the activation of demand-side flexibility potential.Hopefully,this paper can also provide novel insights into the development and further integration of the sharing economy in LEMs.
基金This work was supported in part by the Smart Grid Joint Foundation Program of the National Natural Science Foundation of China and the State Grid Corporation of China(U1866204)in part by the National Natural Science Foundation of China(51907064)and in part by the State Grid Corporation of China(Application Research and Trading Mechanism of Green Electricity Market toward Sustainable Energy Accommodation,52020119000G).
文摘The increasing penetration of plug-in electric ve- hicles (PEVs) has highlighted the importance of coordinating ubiquitous distributed energy resources (DERs) via the internet of things (IoT).With the help of vehicle-to-grid (V2G) technology, PEVs can be aggregated to behave as a storage system, yielding both economic and environmental benefits. In this paper, we propose an optimal bidding framework for a V2G-enabled re- gional energy internet (REI) to participate in day-ahead markets considering carbon trading. The REI operator aims to maximize the net profits from day-ahead markets while anticipating real- time adjustments. A detailed battery model is developed to depict the charging and discharging capability of V2G-enabled PEVs. A two-stage stochastic optimization model is formulated to schedule the operation of PEV fleets against various sources of uncertainties, e.g., the arrival and departure time of PEVs, solar power and real-time prices. Case studies undertaken based on realistic datasets demonstrate that the coordination of the V2G- enabled PEVs and other DERs can facilitate the accommodation of renewable energy, thus improving the REI’s revenues in energy and carbon markets.