BACKGROUND Although the benefits of antiviral therapy for hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC)have been proven,researchers have not con-firmed the differences in patient outcomes between patien...BACKGROUND Although the benefits of antiviral therapy for hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC)have been proven,researchers have not con-firmed the differences in patient outcomes between patients who received preoperative antiviral therapy for a period of time(at least 24 wk)and patients who received remedial antiviral therapy just before radical resection for HBV-related HCC.AIM To investigate the efficacy of perioperative remedial antiviral therapy in patients with HBV-related HCC.METHODS A retrospective study of patients who underwent radical resection for HBV-related HCC at the First Affiliated Hospital of Xi’an Jiaotong University from January 2016 to June 2019 was conducted.Considering the history of antiviral therapy,patients were assigned to remedial antiviral therapy and preoperative antiviral therapy groups.RESULTS Kaplan–Meier analysis revealed significant differences in overall survival(P<0.0001)and disease-free survival(P=0.035)between the two groups.Multivariate analysis demonstrated that a history of preoperative antiviral treatment was independently related to improved survival(hazard ratio=0.27;95%confidence interval:0.08-0.88;P=0.030).CONCLUSION In patients with HBV-related HCC,it is ideal to receive preoperative long-term antiviral therapy,which helps patients tolerate more extensive hepatectomy;however,remedial antiviral therapy,which reduces preoperative HBV-DNA levels to less than 4 Log10 copies DNA/mL,can also result in improved outcomes.展开更多
It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(...It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.展开更多
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti...Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.展开更多
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO...Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change.展开更多
Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-c...Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications.展开更多
The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulati...The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.展开更多
It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,th...It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.展开更多
Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie te...Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena.展开更多
The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, ...The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.展开更多
Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forest...Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.展开更多
Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide b...Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.展开更多
As a new type of environmental pollutants,microplastics have gradually attracted people's attention.A large number of plastics discharged into the environment by human beings are constantly aging and breaking,and ...As a new type of environmental pollutants,microplastics have gradually attracted people's attention.A large number of plastics discharged into the environment by human beings are constantly aging and breaking,and finally become microplastics.Microplastics can adsorb pollutants in the environment,and their components have certain toxicity,which can cause different degrees of harm to organisms.Due to the structural characteristics of microplastic particles,such as small particle size,large specific surface area,and their distribution in different environmental media,it is very difficult to accurately detect microplastics.Reliable collection and detection methods are the key to the study of environmental behavior of microplastics.In this study,the collection and detection methods of microplastics in the environment were reviewed,and the development direction of microplastics detection technology in the future was prospected.This study has a certain reference value for the related research and the prevention and treatment of micro-plastic pollution.展开更多
Microplastics pollution has become one of the focuses of global environmental science research.Microplastics include micro plastic particles and nano-plastic particles,which come from the decomposition of plastic prod...Microplastics pollution has become one of the focuses of global environmental science research.Microplastics include micro plastic particles and nano-plastic particles,which come from the decomposition of plastic products,the release of microfibers and the industrial process of plastic particles.The distribution of microplastics in water,soil and atmosphere is summarized,and the widespread existence of microplastics in different environmental media is emphasized.This paper also summarizes the potential impact of microplastics on ecosystems and organisms,and pays attention to the transmission and accumulation of microplastics in the food chain,as well as its potential threat to human health.Finally,the paper discusses the methods and technologies of microplastics treatment and monitoring at present,and puts forward the direction of further research on microplastics pollution in order to formulate more effective management and mitigation strategies.展开更多
Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ioni...Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ionic bridge in CN/BMO catalysts can boost the rapid transfer of photogenerated electrons from Bi2MoO6to g-C_(3)N_(4).And the synergy effect of g-C_(3)N_(4)and Bi2MoO6components remarkably enhance CO_(2)adsorption capability.CN/BMO-2 catalyst has the best performances for visible light-driven CO_(2)reduction compared with single Bi2MoO6and g-C_(3)N_(4),i.e.,its amount and selectivity of CO product are 139.50μmol g-1and 96.88%for 9 h,respectively.Based on the results of characterizations and density functional theory calculation,the photocatalytic mechanism for CO_(2)reduction is proposed.The high-efficient separation efficiency of photogenerated electron-hole pairs,induced by variable valence Mo^(5+)/Mo^(6+)ionic bridge,can boost the rate-limiting steps(COOH*-to-CO*and CO*desorption)of selective visible light-driven CO_(2)conversion into CO.It inspires the establishment of efficient photocatalysts for CO_(2)conversion.展开更多
Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-pu...Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance.展开更多
基金Supported by National Natural Science Foundation of China,No.82070649.
文摘BACKGROUND Although the benefits of antiviral therapy for hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC)have been proven,researchers have not con-firmed the differences in patient outcomes between patients who received preoperative antiviral therapy for a period of time(at least 24 wk)and patients who received remedial antiviral therapy just before radical resection for HBV-related HCC.AIM To investigate the efficacy of perioperative remedial antiviral therapy in patients with HBV-related HCC.METHODS A retrospective study of patients who underwent radical resection for HBV-related HCC at the First Affiliated Hospital of Xi’an Jiaotong University from January 2016 to June 2019 was conducted.Considering the history of antiviral therapy,patients were assigned to remedial antiviral therapy and preoperative antiviral therapy groups.RESULTS Kaplan–Meier analysis revealed significant differences in overall survival(P<0.0001)and disease-free survival(P=0.035)between the two groups.Multivariate analysis demonstrated that a history of preoperative antiviral treatment was independently related to improved survival(hazard ratio=0.27;95%confidence interval:0.08-0.88;P=0.030).CONCLUSION In patients with HBV-related HCC,it is ideal to receive preoperative long-term antiviral therapy,which helps patients tolerate more extensive hepatectomy;however,remedial antiviral therapy,which reduces preoperative HBV-DNA levels to less than 4 Log10 copies DNA/mL,can also result in improved outcomes.
基金supported by the National Key Research and Development Program of China(Nos.2022YFB3504100,2022YFB3506200)the National Natural Science Foundation of China(Nos.22208373,22376217)+1 种基金the Beijing Nova Program(No.20220484215)the Science Foundation of China University of Petroleum,Beijing(No.2462023YJRC030)。
文摘It is urgent to develop catalysts with application potential for oxidative coupling of methane(OCM)at relatively lower temperature.Herein,three-dimensional ordered macro porous(3 DOM)La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)(A_(2)B_(2)O_(7)-type)catalysts with disordered defective cubic fluorite phased structure were successfully prepared by a colloidal crystal template method.3DOM structure promotes the accessibility of the gaseous reactants(O2and CH4)to the active sites.The co-doping of Ca and Sr ions in La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts improved the formation of oxygen vacancies,thereby leading to increased density of surface-active oxygen species(O_(2)^(-))for the activation of CH4and the formation of C2products(C2H6and C2H4).3DOM La_(2-x)Sr_(x)Ce_(2-y)CayO_(7-δ)catalysts exhibit high catalytic activity for OCM at low temperature.3DOM La1.7Sr0.3Ce1.7Ca0.3O7-δcatalyst with the highest density of O_(2)^(-)species exhibited the highest catalytic activity for low-temperature OCM,i.e.,its CH4conversion,selectivity and yield of C2products at 650℃are 32.2%,66.1%and 21.3%,respectively.The mechanism was proposed that the increase in surface oxygen vacancies induced by the co-doping of Ca and Sr ions boosts the key step of C-H bond breaking and C-C bond coupling in catalyzing low-temperature OCM.It is meaningful for the development of the low-temperature and high-efficient catalysts for OCM reaction in practical application.
基金The authors acknowledge the financial supports from the National Science Foundation of China(U1908204,91845201,and 22002093)the funds that Central Government Guides Local Science and Technology Development(2022JH6/100100052)Scientific Research Project of Education Department of Liaoning Province(LQN202006).
文摘Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.
基金supported by the GuangDong Basic and Applied Basic Research Foundation(2022A1515110439)the National Natural Science Foundation of China(32101393)+1 种基金China Postdoctoral Science Foundation(2023M7339832023M743547)。
文摘Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(Grant Nos.62001460,31971368,12202461,and 22104148)the Guangdong Regional Joint Funds for Young Scientists(Grant Nos.2020A1515110201 and 2020A1515110368)+2 种基金Guangdong Provincial General Funding(Grant No.2021A1515220156)Guangdong Basic and Applied Basic Research Funding-Regional Joint Fund(Grant No.2020B1515120040)Shenzhen Science and Technology Research Funding(Grant Nos.JSGG20201103153801005,JSGG20191115141601721,ZDSYS20220527171406014,JCYJ20220818101412027,JCYJ20200109115635440,and JCYJ 20200109115408041).
文摘Sensitive detection and precise quantitation of trace-level crucial biomarkers in a complex sample matrix has become an important area of research.For example,the detection of high-sensitivity cardiac troponin I (hs-cTnI) is strongly recommended in clinical guidelines for early diagnosis of acute myocardial infarction.Based on the use of an electrode modified by single-walled carbon nanotubes (SWCNTs) and a Ru(bpy)32+-doped silica nanoparticle (Ru@SiO2)/tripropylamine (TPA) system,a novel type of electrochemiluminescent (ECL) magnetoimmunosensor is developed for ultrasensitive detection of hs-cTnI.In this approach,a large amount of[Ru(bpy)3]2+is loaded in SiO2(silica nanoparticles) as luminophores with high luminescent efficiency and SWCNTs as electrode surface modification material with excellent electrooxidation ability for TPA.Subsequently,a hierarchical micropillar array of microstructures is fabricated with a magnet placed at each end to efficiently confine a single layer of immunomagnetic microbeads on the surface of the electrode and enable 7.5-fold signal enhancement In particular,the use of transparent SWCNTs to modify a transparent ITO electrode provides a two-order-of-magnitude ECL signal amplification.A good linear calibration curve is developed for hs-cTnI concentrations over a wide range from 10 fg/ml to 10 ng/ml,with the limit of detection calculated as 8.720 fg/ml (S/N=3).This ultrasensitive immunosensor exhibits superior detection performance with remarkable stability,reproducibility,and selectivity.Satisfactory recoveries are obtained in the detection of hs-cTnI in human serum,providing a potentia analysis protocol for clinical applications.
文摘The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.
基金the support from the International Science and Technology Cooperation Program of Shaanxi Province(No.2023-GHZD-50)the Projects of Major Innovation Platforms for Scientific and Technological and Local Transformation of Scientific and Technological Achievements of Xi’an(No.20GXSF0003)+1 种基金the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(No.2022JH-ZDZH-0039)the Higher Education Institution Discipline Innovation and Intelligence Base of Shaanxi Provincial(No.S2021-ZC-GXYZ-0011)。
文摘It is important to improve the comprehensive performance of the ductile iron bars(DIBs)for the cylinder block of the extra high pressure hydraulic plunger pump and accelerate the industrial application.In this work,the LZQT600-3 DIBs with the diameter of 145 mm were prepared by the horizontal continuous casting(HCC)process,that is,LZQT600-3 HCCDIBs.The microstructure and room temperature tensile properties of different sections[left-edge(surface layer),left-1/2R(left half of the radius),and the center of the HCCDIBs]were studied.The results show that the spheroidization of LZQT600-3 HCCDIBs matrix from the left-edge,left-1/2R to the center is at nodulizing grade II and above.As the cooling rate gradually decreases from surface to the center of the HCCIBs,the number of spheroidized graphite is gradually reduced,the size is gradually increased,the shape factor is decreased,and the pearlite content and lamellate spacing are increased.Along the horizontal direction of the section,the hardness of the material is distributed symmetrically around the center of the HCCDIBs.In the vertical direction,the hardness distribution in the center of the HCCDIBs is asymmetrical due to the gravity during the solidification process.Therefore,the microstructure in the lower part of the section solidifies relatively quickly.The left-edge has the best tensile mechanical properties,and the ultimate tensile strength,yield tensile strength and elongation are 597.3 MPa,418.5 MPa and 9.6%,respectively.The tensile fracture belongs to the ductile-brittle hybrid fracture.The comprehensive performances of LZQT600-3 HCCDIBs meet the actual application requirements of ultra-high pressure hydraulic plunger pump cylinder.
基金The work is supported by the National Key Research and Development Program of China(Grant No.2022YFA1204104)the National Natural Science Foundation of China(Grant No.61888102)the Chinese Academy of Sciences(Grant Nos.ZDBS-SSW-WHC001 and XDB33030100).
文摘Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1204100)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33030000,ZDBS-SSW-WHC001,YSBR-003,and YSBR-053)Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.
基金funded by the Talents ans its Youth Project of Xinjiang Production and Construction Corps(38000020924,380000358).
文摘Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions.
文摘Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.
基金Supported by Project of National Center of Technology Innovation for Dairy"Study on the Key Technologies of Microplastics Detection for New Pollutants in Dairy Ingredient Water"(2023-KFKT-24).
文摘As a new type of environmental pollutants,microplastics have gradually attracted people's attention.A large number of plastics discharged into the environment by human beings are constantly aging and breaking,and finally become microplastics.Microplastics can adsorb pollutants in the environment,and their components have certain toxicity,which can cause different degrees of harm to organisms.Due to the structural characteristics of microplastic particles,such as small particle size,large specific surface area,and their distribution in different environmental media,it is very difficult to accurately detect microplastics.Reliable collection and detection methods are the key to the study of environmental behavior of microplastics.In this study,the collection and detection methods of microplastics in the environment were reviewed,and the development direction of microplastics detection technology in the future was prospected.This study has a certain reference value for the related research and the prevention and treatment of micro-plastic pollution.
文摘Microplastics pollution has become one of the focuses of global environmental science research.Microplastics include micro plastic particles and nano-plastic particles,which come from the decomposition of plastic products,the release of microfibers and the industrial process of plastic particles.The distribution of microplastics in water,soil and atmosphere is summarized,and the widespread existence of microplastics in different environmental media is emphasized.This paper also summarizes the potential impact of microplastics on ecosystems and organisms,and pays attention to the transmission and accumulation of microplastics in the food chain,as well as its potential threat to human health.Finally,the paper discusses the methods and technologies of microplastics treatment and monitoring at present,and puts forward the direction of further research on microplastics pollution in order to formulate more effective management and mitigation strategies.
基金supported by the National Natural Science Foundation of China(21972166)the Beijing Natural Science Foundation(2202045)the National Key Research and Development Program of China(2019YFC1907600)。
文摘Herein,the catalysts of ultrathin g-C_(3)N_(4)surface-modified hollow spherical Bi2MoO6(g-C_(3)N_(4)/Bi2MoO6,abbreviated as CN/BMO)were fabricated by the co-solvothermal method.The variable valence Mo^(5+)/Mo^(6+)ionic bridge in CN/BMO catalysts can boost the rapid transfer of photogenerated electrons from Bi2MoO6to g-C_(3)N_(4).And the synergy effect of g-C_(3)N_(4)and Bi2MoO6components remarkably enhance CO_(2)adsorption capability.CN/BMO-2 catalyst has the best performances for visible light-driven CO_(2)reduction compared with single Bi2MoO6and g-C_(3)N_(4),i.e.,its amount and selectivity of CO product are 139.50μmol g-1and 96.88%for 9 h,respectively.Based on the results of characterizations and density functional theory calculation,the photocatalytic mechanism for CO_(2)reduction is proposed.The high-efficient separation efficiency of photogenerated electron-hole pairs,induced by variable valence Mo^(5+)/Mo^(6+)ionic bridge,can boost the rate-limiting steps(COOH*-to-CO*and CO*desorption)of selective visible light-driven CO_(2)conversion into CO.It inspires the establishment of efficient photocatalysts for CO_(2)conversion.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.21802167,21961132026,92034302,21878331,91645108)the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210903).
文摘Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance.