Spontaneous symmetry breaking(SSB)plays a central role in understanding a large variety of phenomena associated with phase transitions,such as superfluid and superconductivity.So far,the transition from a symmetric va...Spontaneous symmetry breaking(SSB)plays a central role in understanding a large variety of phenomena associated with phase transitions,such as superfluid and superconductivity.So far,the transition from a symmetric vacuum to a macroscopically ordered phase has been substantially explored.The process bridging these two distinct phases is critical to understanding how a classical world emerges from a quantum phase transition,but so far remains unexplored in experiment.We here report an experimental demonstration of such a process with a quantum Rabi model engineered with a superconducting circuit.We move the system from the normal phase to the superradiant phase featuring two symmetry-breaking field components,one of which is observed to emerge as the classical reality.The results demonstrate that the environment-induced decoherence plays a critical role in the SSB.展开更多
Investigation of the nonlocality evolution of entangled mesoscopic fields under decoherence not only is important for understanding the quantum–classical transition,but also has relevance to quantum communication and...Investigation of the nonlocality evolution of entangled mesoscopic fields under decoherence not only is important for understanding the quantum–classical transition,but also has relevance to quantum communication and quantum computation protocols based on continuous variables.According to previous formulations of Bell inequalities,the system loses nonlocal features far before the disappearance of entanglement.We here construct a new version of Bell signal based on rotated and displaced on–off correlations,with which the Bell inequality is violated as long as there remains entanglement and the field state components keep quasiorthogonal.Consequently,the nonlocal character revealed by our formulation decays much slower compared with those based on previous ones.More importantly,there exists a wide regime where the Bell inequality is restored with previous formulations but remains to be violated based on our correlation operators.展开更多
Quantum operations by utilizing the underlying geometric phases produced in physical systems are favoured due to their potential robustness.When a system in a non-degenerate eigenstate undergoes an adiabatically cycli...Quantum operations by utilizing the underlying geometric phases produced in physical systems are favoured due to their potential robustness.When a system in a non-degenerate eigenstate undergoes an adiabatically cyclic evolution dominated by its Hamiltonian,it will get a geometric phase,referred to as the Berry Phase.While a non-adiabatically cyclic evolution produces an Aharonov-Anandan geometric phase.The two types of Abelian geometric phases are extended to the non-Abelian cases,where the phase factors become matrix-valued and the transformations associated with different loops are non-commutable.Abelian and non-Abelian(holonomic)operations are prevalent in discrete variable systems,whose limited(say,two)energy levels,form the qubit.While their developments in continuous systems have also been investigated,mainly due to that,bosonic modes(in,such as,cat states)with large Hilbert spaces,provide potential advantages in fault-tolerant quantum computation.Here we propose a feasible scheme to realize non-adiabatic holonomic quantum logic operations in continuous variable systems with cat codes.We construct arbitrary single-qubit(two-qubit)gates with the combination of single-and two-photon drivings applied to a Kerr Parametric Oscillator(KPO)(the coupled KPOs).Our scheme relaxes the requirements of the previously proposed quantum geometric operation strategies in continuous variable systems,providing an effective way for quantum control.展开更多
Quantum systems that undergo quantum phase transitions exhibit divergent susceptibility and can be exploited as probes to estimate physical parameters.We generalize the dynamic framework for criticality-enhanced quant...Quantum systems that undergo quantum phase transitions exhibit divergent susceptibility and can be exploited as probes to estimate physical parameters.We generalize the dynamic framework for criticality-enhanced quantum sensing by the quantum Rabi model(QRM)to its anisotropic counterpart and derive the correspondingly analytical expressions for the quantum Fisher information(QFI).We find that the contributions of the rotating-wave and counterrotating-wave interaction terms are symmetric at the limit of the infinite ratio of qubit frequency to field frequency,with the QFI reaching a maximum for the isotropic QRM.At finite frequency scaling,we analytically derive the inverted variance of higher-order correction and find that it is more affected by the rotating-wave coupling than by the counterrotating-wave coupling.展开更多
Rho family small GTPases are universal signaling switches in the control of cell polarity in eukaryotic cells. Their polar distribution to the cell cortex is critical for the execution of their functions, yet the mech...Rho family small GTPases are universal signaling switches in the control of cell polarity in eukaryotic cells. Their polar distribution to the cell cortex is critical for the execution of their functions, yet the mechanism for this distribution is poorly understood. Using a yeast two-hybrid method, we identified RIP1 (ROP interactive partner 1), which belongs to a family of five members of novel proteins that share a C-terminal region that interacts with ROP. When expressed in Arabidopsis pollen, green fluorescence protein GFP-tagged RIP1 was localized to the nucleus of mature pollen. When pollen grains were hydrated in germination medium, GFP-RIP1 switched from the nucleus to the cell cortex at the future pollen germination site and was maintained in the apical cortex of germinating pollen and growing pollen tubes. RIP1 was found to interact with ROP1 in pollen tubes, and the cortical RIP1 localization was influenced by the activity of ROP1. Overexpression of RIP1 induced growth depolarization in pollen tubes, a phenotype similar to that induced by ROP1 overexpression. Interestingly, RIP1 overexpression enhanced GFP-ROP1 recruitment to the plasma membrane (PM) of pollen tubes. Based on these observations, we hypothesize that RIP1 is involved in the positive feedback regulation of ROP1 localization to the PM, leading to the establishment of a polar site for pollen germination and pollen tube growth.展开更多
A quantum network is a promising quantum many-body system because of its tailored geometry and controllable interaction. Here,we propose an external control scheme for the qubit-photon interaction and multiqubit reset...A quantum network is a promising quantum many-body system because of its tailored geometry and controllable interaction. Here,we propose an external control scheme for the qubit-photon interaction and multiqubit reset in a dissipative quantum network,which comprises superconducting circuit chains with microwave drives and filter-filter couplings. The traditional multiqubit reset of the quantum network requires physically disconnected qubits to prevent their entanglement. However, we use an original effect of dissipation, i.e., consuming the entanglement generated by qubits’ interaction, to achieve an external control of the multiqubit reset in an always-connected superconducting circuit. The reset time is independent of the number of qubits in the quantum network. Our proposal can tolerate considerable fluctuations in the system parameters and can be applicable to higherdimensional quantum networks.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11874114,12274080,and 11875108)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300200)。
文摘Spontaneous symmetry breaking(SSB)plays a central role in understanding a large variety of phenomena associated with phase transitions,such as superfluid and superconductivity.So far,the transition from a symmetric vacuum to a macroscopically ordered phase has been substantially explored.The process bridging these two distinct phases is critical to understanding how a classical world emerges from a quantum phase transition,but so far remains unexplored in experiment.We here report an experimental demonstration of such a process with a quantum Rabi model engineered with a superconducting circuit.We move the system from the normal phase to the superradiant phase featuring two symmetry-breaking field components,one of which is observed to emerge as the classical reality.The results demonstrate that the environment-induced decoherence plays a critical role in the SSB.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274080,11875108)。
文摘Investigation of the nonlocality evolution of entangled mesoscopic fields under decoherence not only is important for understanding the quantum–classical transition,but also has relevance to quantum communication and quantum computation protocols based on continuous variables.According to previous formulations of Bell inequalities,the system loses nonlocal features far before the disappearance of entanglement.We here construct a new version of Bell signal based on rotated and displaced on–off correlations,with which the Bell inequality is violated as long as there remains entanglement and the field state components keep quasiorthogonal.Consequently,the nonlocal character revealed by our formulation decays much slower compared with those based on previous ones.More importantly,there exists a wide regime where the Bell inequality is restored with previous formulations but remains to be violated based on our correlation operators.
基金supported by the National Natural Science Foundation of China(Grand Nos.12274080,and 11875108)。
文摘Quantum operations by utilizing the underlying geometric phases produced in physical systems are favoured due to their potential robustness.When a system in a non-degenerate eigenstate undergoes an adiabatically cyclic evolution dominated by its Hamiltonian,it will get a geometric phase,referred to as the Berry Phase.While a non-adiabatically cyclic evolution produces an Aharonov-Anandan geometric phase.The two types of Abelian geometric phases are extended to the non-Abelian cases,where the phase factors become matrix-valued and the transformations associated with different loops are non-commutable.Abelian and non-Abelian(holonomic)operations are prevalent in discrete variable systems,whose limited(say,two)energy levels,form the qubit.While their developments in continuous systems have also been investigated,mainly due to that,bosonic modes(in,such as,cat states)with large Hilbert spaces,provide potential advantages in fault-tolerant quantum computation.Here we propose a feasible scheme to realize non-adiabatic holonomic quantum logic operations in continuous variable systems with cat codes.We construct arbitrary single-qubit(two-qubit)gates with the combination of single-and two-photon drivings applied to a Kerr Parametric Oscillator(KPO)(the coupled KPOs).Our scheme relaxes the requirements of the previously proposed quantum geometric operation strategies in continuous variable systems,providing an effective way for quantum control.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274080,11874114,and 11875108)the National Youth Science Foundation of China(Grant No.12204105)+1 种基金the Educational Research Project for Young and Middle-aged Teachers of Fujian Province(Grant No.JAT210041)the Natural Science Foundation of Fujian Province(Grant Nos.2021J01574,and 2022J05116).
文摘Quantum systems that undergo quantum phase transitions exhibit divergent susceptibility and can be exploited as probes to estimate physical parameters.We generalize the dynamic framework for criticality-enhanced quantum sensing by the quantum Rabi model(QRM)to its anisotropic counterpart and derive the correspondingly analytical expressions for the quantum Fisher information(QFI).We find that the contributions of the rotating-wave and counterrotating-wave interaction terms are symmetric at the limit of the infinite ratio of qubit frequency to field frequency,with the QFI reaching a maximum for the isotropic QRM.At finite frequency scaling,we analytically derive the inverted variance of higher-order correction and find that it is more affected by the rotating-wave coupling than by the counterrotating-wave coupling.
基金This work is supported by grants from Department of Energy (DEFG02-04ER15555) and National Science Foundation (MCB0111082) to Z.Y.We thank members of the Yang lab and Lord lab for their stimulating discussion. No conflict of interest declared.
文摘Rho family small GTPases are universal signaling switches in the control of cell polarity in eukaryotic cells. Their polar distribution to the cell cortex is critical for the execution of their functions, yet the mechanism for this distribution is poorly understood. Using a yeast two-hybrid method, we identified RIP1 (ROP interactive partner 1), which belongs to a family of five members of novel proteins that share a C-terminal region that interacts with ROP. When expressed in Arabidopsis pollen, green fluorescence protein GFP-tagged RIP1 was localized to the nucleus of mature pollen. When pollen grains were hydrated in germination medium, GFP-RIP1 switched from the nucleus to the cell cortex at the future pollen germination site and was maintained in the apical cortex of germinating pollen and growing pollen tubes. RIP1 was found to interact with ROP1 in pollen tubes, and the cortical RIP1 localization was influenced by the activity of ROP1. Overexpression of RIP1 induced growth depolarization in pollen tubes, a phenotype similar to that induced by ROP1 overexpression. Interestingly, RIP1 overexpression enhanced GFP-ROP1 recruitment to the plasma membrane (PM) of pollen tubes. Based on these observations, we hypothesize that RIP1 is involved in the positive feedback regulation of ROP1 localization to the PM, leading to the establishment of a polar site for pollen germination and pollen tube growth.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875108,11774058,11405031,and 11347114)supported by the National Natural Science Foundation of China(Grant No.61771278)+4 种基金the National Natural Science Foundation of China(Grant No.11925404)the Natural Science Foundation of Fujian Province(Grant Nos.2018J014122014J05005)the Beijing Institute of Technology Research Fund Program for Young Scholarssupported by the National Key Research and Development Program of China(Grant No.2017YFA0304303)。
文摘A quantum network is a promising quantum many-body system because of its tailored geometry and controllable interaction. Here,we propose an external control scheme for the qubit-photon interaction and multiqubit reset in a dissipative quantum network,which comprises superconducting circuit chains with microwave drives and filter-filter couplings. The traditional multiqubit reset of the quantum network requires physically disconnected qubits to prevent their entanglement. However, we use an original effect of dissipation, i.e., consuming the entanglement generated by qubits’ interaction, to achieve an external control of the multiqubit reset in an always-connected superconducting circuit. The reset time is independent of the number of qubits in the quantum network. Our proposal can tolerate considerable fluctuations in the system parameters and can be applicable to higherdimensional quantum networks.