期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatiotemporal variations in glacier area and surface velocity of the northern Antarctic Peninsula during 2018-2022
1
作者 Yu-Long KANG Shi-Chang KANG +5 位作者 Wan-Qin GUO Tao CHE Zong-Li JIANG zhen-feng wang Qiang-Qiang XU Cheng-De YANG 《Advances in Climate Change Research》 SCIE CSCD 2024年第2期297-311,共15页
Ice sheet serves as a crucial indicator for assessing climate change.Mass loss in recent remote sensing-based studies indicated that the Antarctic Peninsula has rapid rates of glacier retreat and speed up of surface v... Ice sheet serves as a crucial indicator for assessing climate change.Mass loss in recent remote sensing-based studies indicated that the Antarctic Peninsula has rapid rates of glacier retreat and speed up of surface velocity.However,observations of seasonal variability of ice speed are limited,and glacier-area changes require multi-temporal monitoring.This study investigated the changes in area and surface velocities of∼375 glaciers on the northern Antarctic Peninsula(NAP)utilizing satellite images acquired by the Sentinel 1&2 satellites during 2018-2022.The results indicate that the glacier area reduced by approximately 166.1±44.2 km^(2)(-0.2%±0.1%per year)during the study period,with an acceleration after 2020(-0.4%±0.3%per year),and the most dramatic reduction happened on the eastern NAP.The maximum annual ice speeds on the NAP generally exceeded 3500 m per year,while the ice speeds in 2021 were the highest(exceeded 4210 m per year).The ice speed variability in austral autumn was higher than in other seasons,meanwhile the summer ice speeds showed an increasing trend.The glacier G012158E47018N,McNeile Glacier,glacier G299637E64094S and Drygalski Glacier showed the most remarkable ice speed variations represented by high daily velocities and strong fluctuations on their termini.Our results demonstrated that the variations in glacier area and seasonal ice speed on the NAP were responsive to the ice-ocean-atmosphere processes.Therefore,seasonal velocity and area variations should be considered when conducting accurate mass balance calculations,model validations and change mechanism analyses under climate warming scenarios. 展开更多
关键词 Glacier area Seasonal ice speed Sentinel 1&2 Northern Antarctic Peninsula Ice-ocean-atmosphere processes
原文传递
Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells 被引量:2
2
作者 Xiao-Cheng Liu Qing-Wu Yin +3 位作者 Zhi-Cheng Hu zhen-feng wang Fei Huang Yong Cao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2019年第1期18-27,1-5,共10页
We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diet... We present here a series of perylene diimide(PDI)based isomeric conjugated polymers for the application as efficient electron acceptors in all-polymer solar cells(all-PSCs).By copolymerizing PDI monomers with 1,4-diethynylbenzene(para-linkage)and 1,3-diethynylbenzene(meta-linkage),isomeric PDI based conjugated polymers with parallel and non-parallel PDI units inside backbones were obtained.It was found that para-linked conjugated polymer(PA)showed better solubility,strongerπ-πstacking,more favorable blend morphology,and better photovoltaic performance than those of meta-linked conjugated polymers(PM)did.Device based on PTB7-Th:PA(PTB7-Th:poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl})showed significantly enhanced photovoltaic performance than that of PTB7-Th:MA(3.29%versus 0.92%).Moreover,the photovoltaic performance of these polymeric acceptors could be further improved via a terpolymeric strategy.By copolymerizing a small amount of meta-linkages into PA,the optimized terpolymeric acceptors enabled to enhance photovoltaic performance with improved the short-circuit current density(Jsc)and fill factor(FF),resulting in an improved power conversion efficiency(PCE)of 4.03%. 展开更多
关键词 Isomeric CONJUGATED polymers All-polymer solar cells Electron ACCEPTORS PERYLENE DIIMIDE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部