Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials ...Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management.展开更多
BaTiO_(3)(BT)has attracted extensive attention among advanced lead-free ferroelectric materials due to its unique dielectric and ferroelectric properties.However,the enormous remanent polarization and coercive field s...BaTiO_(3)(BT)has attracted extensive attention among advanced lead-free ferroelectric materials due to its unique dielectric and ferroelectric properties.However,the enormous remanent polarization and coercive field severely impede the improvement of its energy storage capabilities.Here,the BaTiO_(3)e-Bi(Zn_(0.5)Hf_(0.5))O_(3)(BT-BZH)ceramics with high breakdown field strength and remarkable relaxation characteristics can be obtained by introducing the composite component BZH in BT to regulate the phase structure and grain size of the ceramics.The findings demonstrate that the improvement of energy storage performance is related to the increase of relaxation behavior.A large energy storage density(Wrec~3.62 J/cm^(3))along with superior energy storage efficiency(h~88.5%)is achieved in 0.88BT-0.12BZH relaxor ceramics only at 240 kV/cm.In addition,the sample suggests superior thermal stability and frequency stability within 25e115℃and 1e500 Hz,respectively.Furthermore,the outstanding chargedischarge properties with an ultrafast discharge time(100 ns),large discharged energy density(1.2 J/cm^(3)),impressive current density(519.4 A/cm^(2))and power density(31.1 MW/cm^(3))under the electric field of 120 kV/cm are achieved in studied ceramics.The excellent energy storage performance of BT-BZH ceramics provides a promising platform for the application of lead-free energy-storage materials.展开更多
More and more researchers start to pay attention to the electrocaloric temperature change(DT)in polar materials,which is caused by an applied electric field.In this paper,Ba-doped PbHfO_(3)(PBH)films were prepared by ...More and more researchers start to pay attention to the electrocaloric temperature change(DT)in polar materials,which is caused by an applied electric field.In this paper,Ba-doped PbHfO_(3)(PBH)films were prepared by sol-gel method.Their components,microstructures,dielectric polarization and electro-caloric effects(ECEs)were investigated.With the addition of Ba^(2+),PBH films went from antiferroelectric(AFE)to ferroelectric(FE).At the same time,their dielectric peaks shifted toward lower temperature.The maximum DT obtained in Pb_(0.8)Ba_(0.2)HfO_(3)FE film is 41.1 K,which is an order of magnitude larger than PbHfO_(3)film(△T<4 K at 50℃)and Pb_(0.9)Ba_(0.1)HfO_(3)film(△T<4 K at 120℃).In order to explain this phenomenon,the Landau-Devonshire theory was adopted.Our analysis shows that the rapid variation of energy barrier height near the phase transition temperature is beneficial to obtain large polarization change and high△T,which is needed in solid-state cooling devices.展开更多
Complementary DNAs encoding two types of acetylcholinesterase (ACHE) were isolated from the silkworm, Bombyx mori. The type 1 (Bmacel) and type 2 (Bmace2) ORFs are 2052 and 1917 bp in length, respectively. Both ...Complementary DNAs encoding two types of acetylcholinesterase (ACHE) were isolated from the silkworm, Bombyx mori. The type 1 (Bmacel) and type 2 (Bmace2) ORFs are 2052 and 1917 bp in length, respectively. Both the complete ORFs of the Bmaces and C- terminal truncated forms were recombined into the Bacmid baculovirus vector under the control of the polyhedrin promoter and expressed in Trichoplusia ni (Tn-5B 1-4) cells. The resulting products exhibited ACHE activity and glycosylation of the expressed proteins. An inhibition assay indicated that the ace2-type enzyme was more sensitive than the acel-type enzyme to inhibition by eserine and paraoxon.展开更多
基金We gratefully acknowledge the National Natural Science Foundation of China(Nos.11872132,51803016 and U1837204)the China Postdoctoral Science Foundation(No.2020M673124)+1 种基金the Natural Science Foundation of Chongqing(No.cstc2020jcyj-bshX0001)the Competitive Internal Research Award of Khalifa University(CIRA-2018-16).
文摘Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574057,and 12172093),the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607),and the Science and Technology Program of Guangdong Province of China(Grant No.2017A010104022).
文摘BaTiO_(3)(BT)has attracted extensive attention among advanced lead-free ferroelectric materials due to its unique dielectric and ferroelectric properties.However,the enormous remanent polarization and coercive field severely impede the improvement of its energy storage capabilities.Here,the BaTiO_(3)e-Bi(Zn_(0.5)Hf_(0.5))O_(3)(BT-BZH)ceramics with high breakdown field strength and remarkable relaxation characteristics can be obtained by introducing the composite component BZH in BT to regulate the phase structure and grain size of the ceramics.The findings demonstrate that the improvement of energy storage performance is related to the increase of relaxation behavior.A large energy storage density(Wrec~3.62 J/cm^(3))along with superior energy storage efficiency(h~88.5%)is achieved in 0.88BT-0.12BZH relaxor ceramics only at 240 kV/cm.In addition,the sample suggests superior thermal stability and frequency stability within 25e115℃and 1e500 Hz,respectively.Furthermore,the outstanding chargedischarge properties with an ultrafast discharge time(100 ns),large discharged energy density(1.2 J/cm^(3)),impressive current density(519.4 A/cm^(2))and power density(31.1 MW/cm^(3))under the electric field of 120 kV/cm are achieved in studied ceramics.The excellent energy storage performance of BT-BZH ceramics provides a promising platform for the application of lead-free energy-storage materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.11574057,12172093,11904056)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)+1 种基金Guangdong University Research Platform and Research Project in 2022(Grant No.2022KQNCX216)the China Postdoctoral Science Foundation(Grant No.2022T150158).
文摘More and more researchers start to pay attention to the electrocaloric temperature change(DT)in polar materials,which is caused by an applied electric field.In this paper,Ba-doped PbHfO_(3)(PBH)films were prepared by sol-gel method.Their components,microstructures,dielectric polarization and electro-caloric effects(ECEs)were investigated.With the addition of Ba^(2+),PBH films went from antiferroelectric(AFE)to ferroelectric(FE).At the same time,their dielectric peaks shifted toward lower temperature.The maximum DT obtained in Pb_(0.8)Ba_(0.2)HfO_(3)FE film is 41.1 K,which is an order of magnitude larger than PbHfO_(3)film(△T<4 K at 50℃)and Pb_(0.9)Ba_(0.1)HfO_(3)film(△T<4 K at 120℃).In order to explain this phenomenon,the Landau-Devonshire theory was adopted.Our analysis shows that the rapid variation of energy barrier height near the phase transition temperature is beneficial to obtain large polarization change and high△T,which is needed in solid-state cooling devices.
基金We are grateful to Professor D. Fournier at Groupe de Biotechnologie des Proteines, IPBS-CNRS, France for his helpful comments and suggestions on this manuscript. This project was supported by the National Program of High-tech Research and Development (863 High-Tech Program, No. 2006AA10A 119), the National Natural Science Foundation of China (No. 30770280) and the National Basic Research Program of China (2003CB 114403).
文摘Complementary DNAs encoding two types of acetylcholinesterase (ACHE) were isolated from the silkworm, Bombyx mori. The type 1 (Bmacel) and type 2 (Bmace2) ORFs are 2052 and 1917 bp in length, respectively. Both the complete ORFs of the Bmaces and C- terminal truncated forms were recombined into the Bacmid baculovirus vector under the control of the polyhedrin promoter and expressed in Trichoplusia ni (Tn-5B 1-4) cells. The resulting products exhibited ACHE activity and glycosylation of the expressed proteins. An inhibition assay indicated that the ace2-type enzyme was more sensitive than the acel-type enzyme to inhibition by eserine and paraoxon.