A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus(HBV) infection, indicating that there are clinical associations between HBV infection and ...A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus(HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.展开更多
RNA helicases,the largest family of proteins that participate in RNA metabolism,stabilize the intracellular environment through various processes,such as translation and pre-RNA splicing.These proteins are also involv...RNA helicases,the largest family of proteins that participate in RNA metabolism,stabilize the intracellular environment through various processes,such as translation and pre-RNA splicing.These proteins are also involved in some diseases,such as cancers and viral diseases.Autophagy,a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival,is associated with human diseases.Interestingly,similar to autophagy,RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases.According to recent studies,RNA helicases are closely related to autophagy,participate in regulating autophagy,or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progress!on of diseases.Here,we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.展开更多
基金Supported by the National Natural Science Foundation of China,No.81270500The State 12th 5-Year Plan S&T Projects of China,No.2012ZX10002007The National Basic Research Program(973 Program)in China,No.2013CB531400
文摘A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus(HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.
基金State S&T Project of 13th Five Year of China(No.2018ZX10302206)the National Basic Research Program(973)of China(No.2017YFA0503402)the Independent Project Fund of the State Key Laboratory for Diagnosis and Treatment of Infectious Disease,Hangzhou,China。
文摘RNA helicases,the largest family of proteins that participate in RNA metabolism,stabilize the intracellular environment through various processes,such as translation and pre-RNA splicing.These proteins are also involved in some diseases,such as cancers and viral diseases.Autophagy,a self-digestive and cytoprotective trafficking process in which superfluous organelles and cellular garbage are degraded to stabilize the internal environment or maintain basic cellular survival,is associated with human diseases.Interestingly,similar to autophagy,RNA helicases play important roles in maintaining cellular homeostasis and are related to many types of diseases.According to recent studies,RNA helicases are closely related to autophagy,participate in regulating autophagy,or serve as a bridge between autophagy and other cellular activities that widely regulate some pathophysiological processes or the development and progress!on of diseases.Here,we summarize the most recent studies to understand how RNA helicases function as regulatory proteins and determine their association with autophagy in various diseases.