Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simul...Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field.展开更多
The subject of“atmospheric radiation”includes not only fundamental theories on atmospheric gaseous absorption and the scattering and radiative transfer of particles(molecules,cloud,and aerosols),but also their appli...The subject of“atmospheric radiation”includes not only fundamental theories on atmospheric gaseous absorption and the scattering and radiative transfer of particles(molecules,cloud,and aerosols),but also their applications in weather,climate,and atmospheric remote sensing,and is an essential part of the atmospheric sciences.This review includes two parts(Part I and PartⅡ);following the first part on gaseous absorption and particle scattering,this part(PartⅡ)reports the progress that has been made in radiative transfer theories,models,and their common applications,focusing particularly on the contributions from Chinese researchers.The recent achievements on radiative transfer models and methods developed for weather and climate studies and for atmospheric remote sensing are firstly reviewed.Then,the associated applications,such as surface radiation estimation,satellite remote sensing algorithms,radiative parameterization for climate models,and radiative-forcing related climate change studies are summarized,which further reveals the importance of radiative transfer theories and models.展开更多
Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissoluti...Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissolution/solubility,supersaturation,and"spring-parachute"process is still poorly understood,particularly for certain amorphous supersaturating drug delivery systems(aSDDS).The present work aimed to explore the detailed merit of current attractive amorphization manufacturing methods(i.g.,hot-melt extrusion(HME)technique)on the property improvement of aSDDS in form of amorphous solid dispersion microparticles by employing a model Bcs II drug nitrendipine and a polyvinylpyrrolidone-based model polymer copovidone.Many asDDS systems were developed by various methods,and their physicochemical properties were characterized by SEM,PXRD and DSC.HME-triggered amorphization induced superior supersaturation by the observation of the highest dissolution and solubility.HME induced the optimal supersaturation duration by the observed greatest extension of"spring-parachute"process(e.g,maximum AUCspring-parachute).HME technique is comparable with other techniques for the stabilization of amorphous state during storage.All aSDDS systems by HME and other methods showed improved long-term stability of the amorphous state in comparison to the pure amorphous drug.Fourier transformation infrared spectroscopy,Noyes-Whitney equation,nucleation theory and Gibbs free energy of transfer(△G)were used to analyze the underlying mechanisms.Mo-lecular mechanism studies indicated that HME caused a stronger crystallization inhibition effect in the asDDS systems than other methods,but molecular interaction is not a dominant mechanism for property enhancement caused by HME.For the mechanism associated with the polymer itself(PVPVA64),it could inhibit the drug recrystallization,solubilize the drug spontaneously and cause the improved molecular interactions in all aSDDS systems.This study provided a deep insight into detailed advantage of HME-triggered supersaturation/amorphization and facilitated the applications of the technique both in the field of particuology and in pharmaceutical industry.展开更多
Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,met...Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.展开更多
Following the accelerated development of urbanization and industrialization,atmospheric particulate matter has become a significant threat to public health globally.Environmental health studies usually use the mass co...Following the accelerated development of urbanization and industrialization,atmospheric particulate matter has become a significant threat to public health globally.Environmental health studies usually use the mass concentration of fine particles(PM_(2.5))as a base data to predict the health risks of particulate exposure.However,PM_(2.5)data from ground monitoring stations in China has not been provided until January 2013 by the Ministry of Environmental Protection of China.Hence,an alternative dataset of PM_(2.5)spatiotemporal distributions extending to years earlier than 2013 is urgently needed,which is of great significance to atmospheric environment assessment and pollution prevention and control.Atmospheric aerosol products by the moderate-resolution imaging spectroradiometer(MODIS)have been released since 2000,which provides the possibility to reconstruct historical PM_(2.5).However,most current methods do not have the ability to estimate PM_(2.5)mass concentration independently of ground observations.The PM_(2.5)mass concentration data set produced by PM_(2.5)remote sensing(PMRS)model based on physical processes does not depend on the ground observations,and also is not affected by the uncertainty of model emission sources or the completeness of chemical reaction mechanism.These ensure that the point-by-point validation for PM_(2.5)mass concentration data is more convincing,and the dataset can also be further used for model assimilation and artificial intelligence training to improve their predictions.In this study,we calculate the monthly PM_(2.5)mass concentration near the ground over land of China using aerosol inversion products(aerosol optical depth and fine-mode fraction)of MODIS and meteorological data(boundary layer height&relative humidity)provided by the Modern-Era Retrospective Analysis for Research and Applications Version 2(MERRA-2)data set.The results show that,in China,6 pollution centers mainly concentrated in the central and eastern regions.The highest PM_(2.5)mass concentration occurred in winter,whereas the pollution range was larger in summer.There are 63.4%of validation sites with biases within±20μg m−3,and the expected error is as±(15μg m−3+30%)enveloped by the monthly mean PM_(2.5)mass concentrations.The monthly PM_(2.5)is stored as NETCDF format,with a spatial resolution of 1°×1°.The published data is available in http://www.dx.doi.org/10.11922/sciencedb.j00076.00061.展开更多
A self-assembling bis-pyrene (BP) molecule with π-π interactions was designed and synthesized. In condensed state, the BP self-assembled into highly-ordered mesophase at room temperature, which was characterized b...A self-assembling bis-pyrene (BP) molecule with π-π interactions was designed and synthesized. In condensed state, the BP self-assembled into highly-ordered mesophase at room temperature, which was characterized by using differential scanning calorimetry (DSC), polarized optical microscope (POM), and 1 D wide angle X-ray diffraction (WAXD) techniques. In solution, the BP self-assembled into nanoflbers in the mixed dichloromethane and hexane (1:1 volume ratio) solvent. Interestingly, the BP was not fluorescent when dissolved in dichloromethane solution. However, the self-assembled nanostructures of BP in the mixed solvent showed high intensity of green fluorescence. The advantages of self-assembly and fluorescence feature exhibited that BP could be promising fluorescence nanoprobes or nanosensors for various applications.展开更多
Mapping the mass concentration of near-surface atmospheric particulate matter(PM)using satellite observations has become a popular research niche,leading to the development of a variety of instruments,algorithms,and d...Mapping the mass concentration of near-surface atmospheric particulate matter(PM)using satellite observations has become a popular research niche,leading to the development of a variety of instruments,algorithms,and datasets over the past two decades.In this study,we conducted a holistic review of the major advances and challenges in quantifying PM,with a specific focus on instruments,algorithms,datasets,and modeling methods that have been developed over the past 20 years.The aim of this study is to provide a general guide for future satellite-based PM concentration mapping practices and to better support air quality monitoring and management of environmental health.Specifically,we review the evolution of satellite platforms,sensors,inversion algorithms,and datasets that can be used for monitoring aerosol properties.We then compare various practical methods and techniques that have been used to estimate PM mass concentrations and group them into four primary categories:(1)univariate regression,(2)chemical transport models(CTM),(3)multivariate regression,and(4)empirical physical approaches.Considering the main challenges encountered in PM mapping practices,for example,data gaps and discontinuity,a hybrid method is proposed with the aim of generating PM concentration maps that are both spatially continuous and have high precision.展开更多
基金Supported by the National Natural Science Foundation of China(42275039 and 42022038)。
文摘Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field.
基金Supported by the National Natural Science Foundation of China(42122038,42375128,42275039,and 42075125)National Key Research and Development Program of China(2022YFC3701202)。
文摘The subject of“atmospheric radiation”includes not only fundamental theories on atmospheric gaseous absorption and the scattering and radiative transfer of particles(molecules,cloud,and aerosols),but also their applications in weather,climate,and atmospheric remote sensing,and is an essential part of the atmospheric sciences.This review includes two parts(Part I and PartⅡ);following the first part on gaseous absorption and particle scattering,this part(PartⅡ)reports the progress that has been made in radiative transfer theories,models,and their common applications,focusing particularly on the contributions from Chinese researchers.The recent achievements on radiative transfer models and methods developed for weather and climate studies and for atmospheric remote sensing are firstly reviewed.Then,the associated applications,such as surface radiation estimation,satellite remote sensing algorithms,radiative parameterization for climate models,and radiative-forcing related climate change studies are summarized,which further reveals the importance of radiative transfer theories and models.
基金supported by National Natural Science Foundation of China(No.82172593 and 82204729)Science and Technology Development Program of Jjilin Province of China(No.20210101430JC,YDZJ202201ZYTS234 and YDZJ202201ZYTS223)+4 种基金China Postdoctoral Science Foundation(No.2015M571373)Science and Technology Development Program of jilin City in Jjilin Province of China(No.20200104067,201831739 and 201464053)Scientific Research Foundation of the Education Department of Jilin Province of China(No.JJKH20191072KJ and 2015-401)Doctoral Research Startup Fund Project of Jilin Medical University(No.JYBS2021002LK)the College Students'Innovation Project of Jilin Province(No.202013706026).
文摘Despite the potential advantages of amorphism-induced supersaturation,the merit of new amorphiza-tion formation methods on the properties of the amorphous drug including the stability of the amor-phous state,dissolution/solubility,supersaturation,and"spring-parachute"process is still poorly understood,particularly for certain amorphous supersaturating drug delivery systems(aSDDS).The present work aimed to explore the detailed merit of current attractive amorphization manufacturing methods(i.g.,hot-melt extrusion(HME)technique)on the property improvement of aSDDS in form of amorphous solid dispersion microparticles by employing a model Bcs II drug nitrendipine and a polyvinylpyrrolidone-based model polymer copovidone.Many asDDS systems were developed by various methods,and their physicochemical properties were characterized by SEM,PXRD and DSC.HME-triggered amorphization induced superior supersaturation by the observation of the highest dissolution and solubility.HME induced the optimal supersaturation duration by the observed greatest extension of"spring-parachute"process(e.g,maximum AUCspring-parachute).HME technique is comparable with other techniques for the stabilization of amorphous state during storage.All aSDDS systems by HME and other methods showed improved long-term stability of the amorphous state in comparison to the pure amorphous drug.Fourier transformation infrared spectroscopy,Noyes-Whitney equation,nucleation theory and Gibbs free energy of transfer(△G)were used to analyze the underlying mechanisms.Mo-lecular mechanism studies indicated that HME caused a stronger crystallization inhibition effect in the asDDS systems than other methods,but molecular interaction is not a dominant mechanism for property enhancement caused by HME.For the mechanism associated with the polymer itself(PVPVA64),it could inhibit the drug recrystallization,solubilize the drug spontaneously and cause the improved molecular interactions in all aSDDS systems.This study provided a deep insight into detailed advantage of HME-triggered supersaturation/amorphization and facilitated the applications of the technique both in the field of particuology and in pharmaceutical industry.
基金supported partly by the National Key R&D Program of China(No.2022YFE029500)the National Natural Science Foundation of China(No.51637005)+1 种基金the S&T Program of Hebei(No.G2020502001)the Information Plan of Chinese Academy of Sciences(No.CAS-WX 2023PY-0103)。
文摘Methane is one of the major greenhouse gases(GHGs)and agriculture is recognized as its primary emitter.Methane accounting is a prerequisite for developing effective agriculture mitigation strategies.In this review,methane accounting methods and research status for various agricultural emission source including rice fields,animal enteric fermentation and livestock and poultry manure management were overview,and the influencing factors of each emission source were analyzed and discussed.At the same time,it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation.Finally,mitigation strategies based on accounting results and actual situation are proposed.This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.
基金funded by the National Key R&D Program of China(Grant Number 2016YFE0201400)the Hainan Provincial Natural Science Foundation of China(Grant Number 418QN302)+1 种基金the National Natural Science Foundation of China(Grant Numbers 41925019,41671367)the National Key B&R Program of China[2016YFE0201400].
文摘Following the accelerated development of urbanization and industrialization,atmospheric particulate matter has become a significant threat to public health globally.Environmental health studies usually use the mass concentration of fine particles(PM_(2.5))as a base data to predict the health risks of particulate exposure.However,PM_(2.5)data from ground monitoring stations in China has not been provided until January 2013 by the Ministry of Environmental Protection of China.Hence,an alternative dataset of PM_(2.5)spatiotemporal distributions extending to years earlier than 2013 is urgently needed,which is of great significance to atmospheric environment assessment and pollution prevention and control.Atmospheric aerosol products by the moderate-resolution imaging spectroradiometer(MODIS)have been released since 2000,which provides the possibility to reconstruct historical PM_(2.5).However,most current methods do not have the ability to estimate PM_(2.5)mass concentration independently of ground observations.The PM_(2.5)mass concentration data set produced by PM_(2.5)remote sensing(PMRS)model based on physical processes does not depend on the ground observations,and also is not affected by the uncertainty of model emission sources or the completeness of chemical reaction mechanism.These ensure that the point-by-point validation for PM_(2.5)mass concentration data is more convincing,and the dataset can also be further used for model assimilation and artificial intelligence training to improve their predictions.In this study,we calculate the monthly PM_(2.5)mass concentration near the ground over land of China using aerosol inversion products(aerosol optical depth and fine-mode fraction)of MODIS and meteorological data(boundary layer height&relative humidity)provided by the Modern-Era Retrospective Analysis for Research and Applications Version 2(MERRA-2)data set.The results show that,in China,6 pollution centers mainly concentrated in the central and eastern regions.The highest PM_(2.5)mass concentration occurred in winter,whereas the pollution range was larger in summer.There are 63.4%of validation sites with biases within±20μg m−3,and the expected error is as±(15μg m−3+30%)enveloped by the monthly mean PM_(2.5)mass concentrations.The monthly PM_(2.5)is stored as NETCDF format,with a spatial resolution of 1°×1°.The published data is available in http://www.dx.doi.org/10.11922/sciencedb.j00076.00061.
基金supported by the National Natural Science Foundation of China(Nos. 51573031 and 51473188)
文摘A self-assembling bis-pyrene (BP) molecule with π-π interactions was designed and synthesized. In condensed state, the BP self-assembled into highly-ordered mesophase at room temperature, which was characterized by using differential scanning calorimetry (DSC), polarized optical microscope (POM), and 1 D wide angle X-ray diffraction (WAXD) techniques. In solution, the BP self-assembled into nanoflbers in the mixed dichloromethane and hexane (1:1 volume ratio) solvent. Interestingly, the BP was not fluorescent when dissolved in dichloromethane solution. However, the self-assembled nanostructures of BP in the mixed solvent showed high intensity of green fluorescence. The advantages of self-assembly and fluorescence feature exhibited that BP could be promising fluorescence nanoprobes or nanosensors for various applications.
基金This study was supported by the National Outstanding Youth Foundation of China(41925019)the National Key R&D Program of China(2016YFE0201400)+1 种基金the National Natural Science Foundation of China(41701413,41671367)We also acknowledge the support of the Labex CaPPA project,which is funded by the French National Research Agency under contract"ANR-11-LABX-0005-01".
文摘Mapping the mass concentration of near-surface atmospheric particulate matter(PM)using satellite observations has become a popular research niche,leading to the development of a variety of instruments,algorithms,and datasets over the past two decades.In this study,we conducted a holistic review of the major advances and challenges in quantifying PM,with a specific focus on instruments,algorithms,datasets,and modeling methods that have been developed over the past 20 years.The aim of this study is to provide a general guide for future satellite-based PM concentration mapping practices and to better support air quality monitoring and management of environmental health.Specifically,we review the evolution of satellite platforms,sensors,inversion algorithms,and datasets that can be used for monitoring aerosol properties.We then compare various practical methods and techniques that have been used to estimate PM mass concentrations and group them into four primary categories:(1)univariate regression,(2)chemical transport models(CTM),(3)multivariate regression,and(4)empirical physical approaches.Considering the main challenges encountered in PM mapping practices,for example,data gaps and discontinuity,a hybrid method is proposed with the aim of generating PM concentration maps that are both spatially continuous and have high precision.