Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated d...Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.展开更多
[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F...[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F.thunbergii Miq.introduced to different places.[Methods]F.thunbergii Miq.from four different provenances including Zhejiang,Nantong and Chongqing were introduced and cultivated in Wanzhou of Chongqing.The contents of available Zn,Fe,Mn,Cu,Mo,N,P,K,Ca and Mg in rhizosphere soil of F.thunbergii Miq.during five growing stages were determined after selecting different stem sizes for field cultivation.[Results]Small stems of Pan an and Ningbo provenances(SSG3,121-160/kg)and middle stems of Nantong and Fengjie provenances(SSG2,81-120/kg)showed higher soil availability.[Conclusions]In the process of introduction and cultivation of F.thunbergii Miq.,high yield and high efficiency can be achieved by selecting smaller seed stems of F.thunbergii Miq.展开更多
The mechanisms of streamer generation and propagation in double-sided pulsed surface dielectric barrier discharge(SDBD)on both sides have been analyzed and investigated by experiment and numerical simulation.The fully...The mechanisms of streamer generation and propagation in double-sided pulsed surface dielectric barrier discharge(SDBD)on both sides have been analyzed and investigated by experiment and numerical simulation.The fully exposed asymmetric SDBD has two discharge processes located on the high voltage electrode(HVE)side and the ground electrode(GE)side.Discharge images of the HVE side and GE side are taken by a digital camera under continuous pulse and ICCD(Intensified Charge Coupled Device)is utilized to diagnose the generation and propagation of streamers in single pulse discharge.In order to understand the physical mechanisms of streamer evolution more deeply,we establish a 2D simulation model and analyze it from the aspects of electron density,ion density,reduced electric field and electron impact ionization source term.The results show that the primary and secondary discharges on the HVE side and the GE side of the double-sided SDBD are composed of positive streamer and negative streamer,respectively.On the HVE side,the accumulation of positive charges on the dielectric surface causes the direction of the electric field to reverse,which is the principal factor for the polarity reversal of the streamer.On the GE side,both the negative charges accumulated on the dielectric surface and the falling voltage are the key factors for the streamer polarity switch.展开更多
Based on the 6-year-old young forests of 40 cypress(Cupressus funebris) families from four provenances(Fengdu County, Youyang County and Zhong County of Chongqing City, and Qiandao Lake in Zhejiang Province), differen...Based on the 6-year-old young forests of 40 cypress(Cupressus funebris) families from four provenances(Fengdu County, Youyang County and Zhong County of Chongqing City, and Qiandao Lake in Zhejiang Province), differences in growth traits between families and provenances were studied to select excellent families, so as to provide necessary data support for the upgrading of cypress seed gardens and inferior thinning of seed gardens. The results showed that there were significant differences in tree height, diameter at one meter height, crown width and growth potential between families and provenances. The coefficients of variation among families were 10.25%, 7.19%, 5.91% and 0.98%, respectively, and the coefficients of variation in tree height and diameter at one meter height among provenances were 7.25% and 12.58%, respectively, indicating that the tree height and diameter at one meter height of the superior cypress tree families were rich in variation among families and provenances, and there was potential for high-generation breeding. According to the selection rate of 15%, six excellent families for afforestation(Feng 8, Shi 4, Feng 1, Ye 14, Shi 3, and Ye 6) were screened. The average diameter at one meter height, tree height and crown width of the six excellent families were, respectively, 2.97 cm, 3.39 and 0.78 m, which were 18.82%, 12.70% and 15.42% higher than the family average, respectively, and 15.09%, 9.79% and 15.53% higher than the control group, respectively.展开更多
The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped w...The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped with a 2.5-meter diameter primary mirror, an active optics system, and a mosaic CCD camera with 0.73 gigapixels on the primary focal plane for highquality image capture over a 6.5-square-degree field of view. The installation of WFST near the summit of Saishiteng mountain in the Lenghu region is scheduled in summer of 2023, and the operation is planned to start three months later. WFST will scan the northern sky in four optical bands(u, g, r and i) at cadences from hourly/daily in the deep high-cadence survey(DHS) program, to semi-weekly in the wide field survey(WFS) program. During a photometric night, a nominal 30 s exposure in the WFS program will reach a depth of 22.27, 23.32, 22.84, and 22.31(AB magnitudes) in these four bands, respectively, allowing for the detection of a tremendous amount of transients in the low-z universe and a systematic investigation of the variability of Galactic and extragalactic objects. In the DHS program, intranight 90 s exposures as deep as 23(u) and 24 mag(g), in combination with target of opportunity follow-ups, will provide a unique opportunity to explore energetic transients in demand for high sensitivities, including the electromagnetic counterparts of gravitational wave events, supernovae within a few hours of their explosions,tidal disruption events and fast, luminous optical transients even beyond redshift of unity. In addition, the final 6-year co-added images, anticipated to reach g■25.8 mag in WFS or 1.5 mags deeper in DHS, will be of fundamental importance to general Galactic and extragalactic science. The highly uniform legacy surveys of WFST will serve as an indispensable complement to those of the Vera C. Rubin Observatory's Legacy Survey of Space and Time(LSST) that monitors the southern sky.展开更多
基金supported by National Natural Science Foundation of China(No.52177130)the Key Projects for Industrial Prospects and Core Technology Research in Suzhou City(No.SYC2022029)。
文摘Dielectric barrier discharge(DBD)plasma excited by a high-frequency alternating-current(AC)power supply is widely employed for the degradation of volatile organic compounds(VOCs).However,the thermal effect generated during the discharge process leads to energy waste and low energy utilization efficiency.In this work,an innovative DBD thermally-conducted catalysis(DBD-TCC)system,integrating high-frequency AC-DBD plasma and its generated thermal effects to activate the Co/SBA-15 catalyst,was employed for toluene removal.Specifically,Co/SBA-15 catalysts are closely positioned to the ground electrode of the plasma zone and can be heated and activated by the thermal effect when the voltage exceeds 10 k V.At12.4 k V,the temperature in the catalyst zone reached 261℃ in the DBD-TCC system,resulting in an increase in toluene degradation efficiency of 17%,CO_(2)selectivity of 21.2%,and energy efficiency of 27%,respectively,compared to the DBD system alone.In contrast,the DBD thermally-unconducted catalysis(DBD-TUC)system fails to enhance toluene degradation due to insufficient heat absorption and catalytic activation,highlighting the crucial role of AC-DBD generated heat in the activation of the catalyst.Furthermore,the degradation pathway and mechanism of toluene in the DBD-TCC system were hypothesized.This work is expected to provide an energy-efficient approach for high-frequency AC-DBD plasma removal of VOCs.
基金Supported by Technological Innovation and Application Demonstration Project of Chongqing City(cstc2018jscx-msybX0367).
文摘[Objectives]This study was conducted to screen suitable seed stems of Fritillaria thunbergii Miq.from different provenances and to provide a theoretical basis for the high-yielding and high-efficiency cultivation of F.thunbergii Miq.introduced to different places.[Methods]F.thunbergii Miq.from four different provenances including Zhejiang,Nantong and Chongqing were introduced and cultivated in Wanzhou of Chongqing.The contents of available Zn,Fe,Mn,Cu,Mo,N,P,K,Ca and Mg in rhizosphere soil of F.thunbergii Miq.during five growing stages were determined after selecting different stem sizes for field cultivation.[Results]Small stems of Pan an and Ningbo provenances(SSG3,121-160/kg)and middle stems of Nantong and Fengjie provenances(SSG2,81-120/kg)showed higher soil availability.[Conclusions]In the process of introduction and cultivation of F.thunbergii Miq.,high yield and high efficiency can be achieved by selecting smaller seed stems of F.thunbergii Miq.
基金supported by National Natural Science Foundation of China(Nos.51877027 and 52107140)Project funded by China Postdoctoral Science Foundation(No.2021M700662)。
文摘The mechanisms of streamer generation and propagation in double-sided pulsed surface dielectric barrier discharge(SDBD)on both sides have been analyzed and investigated by experiment and numerical simulation.The fully exposed asymmetric SDBD has two discharge processes located on the high voltage electrode(HVE)side and the ground electrode(GE)side.Discharge images of the HVE side and GE side are taken by a digital camera under continuous pulse and ICCD(Intensified Charge Coupled Device)is utilized to diagnose the generation and propagation of streamers in single pulse discharge.In order to understand the physical mechanisms of streamer evolution more deeply,we establish a 2D simulation model and analyze it from the aspects of electron density,ion density,reduced electric field and electron impact ionization source term.The results show that the primary and secondary discharges on the HVE side and the GE side of the double-sided SDBD are composed of positive streamer and negative streamer,respectively.On the HVE side,the accumulation of positive charges on the dielectric surface causes the direction of the electric field to reverse,which is the principal factor for the polarity reversal of the streamer.On the GE side,both the negative charges accumulated on the dielectric surface and the falling voltage are the key factors for the streamer polarity switch.
基金Supported by Assistance Fund for National Seed Base of Forest Tree
文摘Based on the 6-year-old young forests of 40 cypress(Cupressus funebris) families from four provenances(Fengdu County, Youyang County and Zhong County of Chongqing City, and Qiandao Lake in Zhejiang Province), differences in growth traits between families and provenances were studied to select excellent families, so as to provide necessary data support for the upgrading of cypress seed gardens and inferior thinning of seed gardens. The results showed that there were significant differences in tree height, diameter at one meter height, crown width and growth potential between families and provenances. The coefficients of variation among families were 10.25%, 7.19%, 5.91% and 0.98%, respectively, and the coefficients of variation in tree height and diameter at one meter height among provenances were 7.25% and 12.58%, respectively, indicating that the tree height and diameter at one meter height of the superior cypress tree families were rich in variation among families and provenances, and there was potential for high-generation breeding. According to the selection rate of 15%, six excellent families for afforestation(Feng 8, Shi 4, Feng 1, Ye 14, Shi 3, and Ye 6) were screened. The average diameter at one meter height, tree height and crown width of the six excellent families were, respectively, 2.97 cm, 3.39 and 0.78 m, which were 18.82%, 12.70% and 15.42% higher than the family average, respectively, and 15.09%, 9.79% and 15.53% higher than the control group, respectively.
基金supported by the Cyrus Chun Ying Tang Foundationsthe Major Science and Technology Project of Qinghai Province(Grant No.2019ZJ-A10)+4 种基金the 111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(Grant No.B23042)the National Natural Science Foundation of China(Grant Nos.11833007,12073078,12173088,12192221,12192224,12233008,12273036,and 12273113)the Frontier Scientific Research Program of Deep Space Exploration Laboratory(Grant No.2022-QYKYJH-HXYF-012)the support from the USTC Research Funds of the Double First-Class Initiative(Grant No.YD2030002009)Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(Grant No.YSBR-061),respectively。
文摘The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped with a 2.5-meter diameter primary mirror, an active optics system, and a mosaic CCD camera with 0.73 gigapixels on the primary focal plane for highquality image capture over a 6.5-square-degree field of view. The installation of WFST near the summit of Saishiteng mountain in the Lenghu region is scheduled in summer of 2023, and the operation is planned to start three months later. WFST will scan the northern sky in four optical bands(u, g, r and i) at cadences from hourly/daily in the deep high-cadence survey(DHS) program, to semi-weekly in the wide field survey(WFS) program. During a photometric night, a nominal 30 s exposure in the WFS program will reach a depth of 22.27, 23.32, 22.84, and 22.31(AB magnitudes) in these four bands, respectively, allowing for the detection of a tremendous amount of transients in the low-z universe and a systematic investigation of the variability of Galactic and extragalactic objects. In the DHS program, intranight 90 s exposures as deep as 23(u) and 24 mag(g), in combination with target of opportunity follow-ups, will provide a unique opportunity to explore energetic transients in demand for high sensitivities, including the electromagnetic counterparts of gravitational wave events, supernovae within a few hours of their explosions,tidal disruption events and fast, luminous optical transients even beyond redshift of unity. In addition, the final 6-year co-added images, anticipated to reach g■25.8 mag in WFS or 1.5 mags deeper in DHS, will be of fundamental importance to general Galactic and extragalactic science. The highly uniform legacy surveys of WFST will serve as an indispensable complement to those of the Vera C. Rubin Observatory's Legacy Survey of Space and Time(LSST) that monitors the southern sky.