期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Modulating perovskite crystallization and band alignment using coplanar molecules for high-performance indoor photovoltaics
1
作者 Qu Yang Shuhan Fan +5 位作者 Haozhe Zhang zhenhuang su Xingyu Gao Hui Shen Mingkui Wang Xiu Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期383-390,共8页
The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s... The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity. 展开更多
关键词 Perovskite indoor photovoltaics CsPbI_(3) Coplanar symmetric structure molecules Crystallization kinetics Hydrogen bond N-P homojunction
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
2
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi zhenhuang su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Highly ordered inkjet-printed quantum-dot thin films enable efficient and stable QLEDs with EQE exceeding 23%
3
作者 Changting Wei Bo Xu +9 位作者 Meng Zhang zhenhuang su Jiawei Gu Wenrui Guo Xingyu Gao Wenming su Zheng Cui Seokwoo Jeon Zhiyong Fan Haibo Zeng 《eScience》 2024年第3期152-162,共11页
Inkjet-printed quantum dot light-emitting diodes(QLEDs)are emerging as a promising technology for next-generation displays.However,the progress in fabricating QLEDs using inkjet printing technique has been slower comp... Inkjet-printed quantum dot light-emitting diodes(QLEDs)are emerging as a promising technology for next-generation displays.However,the progress in fabricating QLEDs using inkjet printing technique has been slower compared to spin-coated devices,particularly in terms of efficiency and stability.The key to achieving high performance QLEDs lies in creating a highly ordered and uniform inkjet-printed quantum dot(QD)thin film.In this study,we present a highly effective strategy to significantly improve the quality of inkjet-printed CdZnSe/CdZnS/ZnS QD thin films through a pressure-assisted thermal annealing(PTA)approach.Benefiting from this PTA process,a high quality QD thin film with ordered packing,low surface roughness,high photoluminescence and excellent electrical property is obtained.The mechanism behind the PTA process and its profound impact on device performance have been thoroughly investigated and understood.Consequently,a record high external quantum efficiency(EQE)of 23.08%with an impressive operational lifetime(T50)of up to 343,342h@100cdm−2,and a record EQE of 22.43%with T50 exceeding to 1,500,463h@100cdm−2 are achieved in inkjet-printed red and green CdZnSe-based QLEDs,respectively.This work highlights the PTA process as an important approach to realize highly efficient and stable inkjet-printed QLEDs,thus advancing QLED technology to practical applications. 展开更多
关键词 Inkjet printing Quantum dot light-emitting diode High efficiency Thermal annealing Highly ordered
原文传递
Stress compensation based on interfacial nanostructures for stable perovskite solar cells 被引量:2
4
作者 Cheng Zhu Xi Wang +19 位作者 Hangxuan Li Chenyue Wang Ziyan Gao Pengxiang Zhang Xiuxiu Niu Nengxu Li Zipeng Xu zhenhuang su Yihua Chen Huachao Zai Haipeng Xie Yizhou Zhao Ning Yang Guilin Liu Xueyun Wang Huanping Zhou Jiawang Hong Xingyu Gao Yang Bai Qi Chen 《Interdisciplinary Materials》 2023年第2期348-359,共12页
The long-term stability issue of halide perovskite solar cells hinders their commercialization.The residual stress-strain affects device stability,which is derived from the mismatched thermophysical and mechanical pro... The long-term stability issue of halide perovskite solar cells hinders their commercialization.The residual stress-strain affects device stability,which is derived from the mismatched thermophysical and mechanical properties between adjacent layers.In this work,we introduced the Rb_(2)CO_(3)layer at the interface of SnO_(2)/perovskite with the hierarchy morphology of snowflake-like microislands and dendritic nanostructures.With a suitable thermal expansion coefficient,the Rb_(2)CO_(3)layer benefits the interfacial stress relaxation and results in a compressive stress-strain in the perovskite layer.Moreover,reduced nonradiative recombination losses and optimized band alignment were achieved.An enhancement of open-circuit voltage from 1.087 to 1.153 V in the resultant device was witnessed,which led to power conversion efficiency(PCE)of 22.7%(active area of 0.08313 cm^(2))and 20.6%(1 cm2).Moreover,these devices retained 95%of its initial PCE under the maximum power point tracking(MPPT)after 2700 h.It suggests inorganic materials with high thermal expansion coefficients and specific nanostructures are promising candidates to optimize interfacial mechanics,which improves the operational stability of perovskite cells. 展开更多
关键词 interfacial nanostructures long-term stability perovskite solar cells strain engineering thermal expansion coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部