期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Responses of arbuscular mycorrhizal fungi to straw return and nitrogen fertilizer reduction in a rainfed maize field
1
作者 zhenling peng Hao XI +3 位作者 Lin MAO Huyuan FENG Jianjun ZHANG Yongjun LIU 《Pedosphere》 SCIE CAS CSCD 2024年第2期351-360,共10页
Straw return can be used to reduce fertilizer input and improve agricultural sustainability and soil health.However,how straw return and reduced fertilizer application affect beneficial soil microbes,particularly arbu... Straw return can be used to reduce fertilizer input and improve agricultural sustainability and soil health.However,how straw return and reduced fertilizer application affect beneficial soil microbes,particularly arbuscular mycorrhizal fungi(AMF),remains poorly understood.Here,we conducted a five-year field experiment in a rainfed maize field on the Loess Plateau of northwestern China.We tested four treatments with straw return combined with four nitrogen(N)application rates,i.e.,100%,80%,60%,and 0%of the common N application rate(225 kg N ha^(-1)year^(-1))in this region,and two reference treatments(full or no N application),with three replicates for each treatment.Mycorrhizal colonization was quantified and AMF communities colonizing maize roots were characterized using Illumina sequencing.Forty virtual taxa(VTs)of AMF were identified in root samples,among which VT113(related to Rhizophagus fasciculatus)and VT156(related to Dominikia gansuensis)were the predominant taxa.Both root length colonization and AMF VT richness were sensitive to N fertilization,but not to straw return;furthermore,both gradually increased with decreasing N application rate.The VT composition of the AMF community was also affected by N fertilization,but not by straw return,and the community variation could be well explained by soil available N and phosphorus concentrations.Additionally,60%,80%,and full N fertilization produced similar maize yields.Thus,our study revealed the response patterns of AMF to straw return and N fertilizer reduction and showed that straw return combined with N fertilizer reduction may be a promising practice to maintain mycorrhizal symbiosis concomitantly with crop productivity. 展开更多
关键词 agricultural sustainability crop productivity mycorrhizal colonization mycorrhizal symbiosis root length colonization virtual taxon
原文传递
Q-BioLiP:A Comprehensive Resource for Quaternary Structure-based Protein-ligand Interactions
2
作者 Hong Wei Wenkai Wang +1 位作者 zhenling peng Jianyi Yang 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2024年第1期151-159,共9页
Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand... Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand interactions are represented in the form of single chain-based tertiary structures,which may be inappropriate as many interactions involve multiple protein chains(known as quaternary structures).We sought to address these issues,resulting in Q-BioLiP,a comprehensive resource for quaternary structure-based protein-ligand interactions.The major features of Q-BioLiP include:(1)representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures;(2)pairing DNA/RNA chains properly rather than separation;(3)providing both experimental and predicted binding affinities;(4)retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands’biological relevance;and(5)developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure.With these new features,Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions,including protein-small molecule interaction,protein-metal ion interaction,protein-peptide interaction,protein-protein interaction,protein-DNA/RNA interaction,and RNA-small molecule interaction.Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/. 展开更多
关键词 Protein-ligand interaction Quaternary structure Protein-ligand binding site Protein-protein interaction Binding affinity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部