Straw return can be used to reduce fertilizer input and improve agricultural sustainability and soil health.However,how straw return and reduced fertilizer application affect beneficial soil microbes,particularly arbu...Straw return can be used to reduce fertilizer input and improve agricultural sustainability and soil health.However,how straw return and reduced fertilizer application affect beneficial soil microbes,particularly arbuscular mycorrhizal fungi(AMF),remains poorly understood.Here,we conducted a five-year field experiment in a rainfed maize field on the Loess Plateau of northwestern China.We tested four treatments with straw return combined with four nitrogen(N)application rates,i.e.,100%,80%,60%,and 0%of the common N application rate(225 kg N ha^(-1)year^(-1))in this region,and two reference treatments(full or no N application),with three replicates for each treatment.Mycorrhizal colonization was quantified and AMF communities colonizing maize roots were characterized using Illumina sequencing.Forty virtual taxa(VTs)of AMF were identified in root samples,among which VT113(related to Rhizophagus fasciculatus)and VT156(related to Dominikia gansuensis)were the predominant taxa.Both root length colonization and AMF VT richness were sensitive to N fertilization,but not to straw return;furthermore,both gradually increased with decreasing N application rate.The VT composition of the AMF community was also affected by N fertilization,but not by straw return,and the community variation could be well explained by soil available N and phosphorus concentrations.Additionally,60%,80%,and full N fertilization produced similar maize yields.Thus,our study revealed the response patterns of AMF to straw return and N fertilizer reduction and showed that straw return combined with N fertilizer reduction may be a promising practice to maintain mycorrhizal symbiosis concomitantly with crop productivity.展开更多
Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand...Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand interactions are represented in the form of single chain-based tertiary structures,which may be inappropriate as many interactions involve multiple protein chains(known as quaternary structures).We sought to address these issues,resulting in Q-BioLiP,a comprehensive resource for quaternary structure-based protein-ligand interactions.The major features of Q-BioLiP include:(1)representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures;(2)pairing DNA/RNA chains properly rather than separation;(3)providing both experimental and predicted binding affinities;(4)retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands’biological relevance;and(5)developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure.With these new features,Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions,including protein-small molecule interaction,protein-metal ion interaction,protein-peptide interaction,protein-protein interaction,protein-DNA/RNA interaction,and RNA-small molecule interaction.Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.32060260,32171579,and 32360548)。
文摘Straw return can be used to reduce fertilizer input and improve agricultural sustainability and soil health.However,how straw return and reduced fertilizer application affect beneficial soil microbes,particularly arbuscular mycorrhizal fungi(AMF),remains poorly understood.Here,we conducted a five-year field experiment in a rainfed maize field on the Loess Plateau of northwestern China.We tested four treatments with straw return combined with four nitrogen(N)application rates,i.e.,100%,80%,60%,and 0%of the common N application rate(225 kg N ha^(-1)year^(-1))in this region,and two reference treatments(full or no N application),with three replicates for each treatment.Mycorrhizal colonization was quantified and AMF communities colonizing maize roots were characterized using Illumina sequencing.Forty virtual taxa(VTs)of AMF were identified in root samples,among which VT113(related to Rhizophagus fasciculatus)and VT156(related to Dominikia gansuensis)were the predominant taxa.Both root length colonization and AMF VT richness were sensitive to N fertilization,but not to straw return;furthermore,both gradually increased with decreasing N application rate.The VT composition of the AMF community was also affected by N fertilization,but not by straw return,and the community variation could be well explained by soil available N and phosphorus concentrations.Additionally,60%,80%,and full N fertilization produced similar maize yields.Thus,our study revealed the response patterns of AMF to straw return and N fertilizer reduction and showed that straw return combined with N fertilizer reduction may be a promising practice to maintain mycorrhizal symbiosis concomitantly with crop productivity.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.T2225007 and T2222012)the Foundation for Innovative Research Groups of State Key Laboratory of Microbial Technology,China(Grant No.WZCX2021-03).
文摘Since its establishment in 2013,BioLiP has become one of the widely used resources for protein-ligand interactions.Nevertheless,several known issues occurred with it over the past decade.For example,the protein-ligand interactions are represented in the form of single chain-based tertiary structures,which may be inappropriate as many interactions involve multiple protein chains(known as quaternary structures).We sought to address these issues,resulting in Q-BioLiP,a comprehensive resource for quaternary structure-based protein-ligand interactions.The major features of Q-BioLiP include:(1)representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures;(2)pairing DNA/RNA chains properly rather than separation;(3)providing both experimental and predicted binding affinities;(4)retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands’biological relevance;and(5)developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure.With these new features,Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions,including protein-small molecule interaction,protein-metal ion interaction,protein-peptide interaction,protein-protein interaction,protein-DNA/RNA interaction,and RNA-small molecule interaction.Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.