A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performanc...A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performances of these catalysts for the steam reforming of methanol were evaluated in a laboratory-scale fixed-bed reactor at 0.1 MPa and temperatures between 473 and 543 K. The results showed that the catalytic activity depended greatly on the catalyst reducibility and the specific surface area of Cu. An approximate linear correlation between the catalytic activity and the Cu surface area was found for all catalysts investigated in this study.Compared to CuO/ZnO/Al_2O_3, the ZrO_2-doped CuO/ZnO/Al_2O_3 exhibited higher activity and selectivity to CO,while the CeO_2-doped catalyst displayed lower activity and selectivity. Finally, an intrinsic kinetic study was carried out over a screened CuO/ZnO/CeO_2/Al_2O_3 catalyst in the absence of internal and external mass transfer effects. A good agreement was observed between the model-derived effluent concentrations of CO(CO_2) and the experimental data. The activation energies for the reactions of methanol-steam reforming, water-gas shift and methanol decomposition over CuO/ZnO/CeO_2/Al_2O_3 were 93.1, 85.1 and 116.5 k J·mol^(-1), respectively.展开更多
Vacuum gas oil(VGO)is the most important feedstock for hydrocracking processes in refineries,but its molecular composition cannot be fully acquired by current analysis techniques owing to its complexity.In order to bu...Vacuum gas oil(VGO)is the most important feedstock for hydrocracking processes in refineries,but its molecular composition cannot be fully acquired by current analysis techniques owing to its complexity.In order to build an accurate and reliable molecular-level kinetic model for reactor design and process optimization,the molecular composition of VGO has to be reconstructed based on limited measurements.In this study,a modified stochastic reconstruction-entropy maximization(SR-REM)algorithm was applied to reconstruct VGOs,with generation of a general molecule library once and for all via the SR method at the first step and adjustment of the molecular abundance of various VGOs via the REM method at the second step.The universality of the molecule library and the effectiveness of the modified SR-REM method were validated by fifteen VGOs(three from the literature)from different geographic regions of the world and with different properties.The simulated properties(density,elemental composition,paraffin-naphthene-aromatics distribution,boiling point distribution,detailed composition of naphthenes and aromatics in terms of ring number as well as composition of S-heterocycles)are in good agreement with the measured counterparts,showing average absolute relative errors of below 10%for each property.展开更多
Carboxylation of aromatics by CO2 to generate corresponding carboxylic acids is recently providing a novel approach to utilize the green gas CO2, in which the activation of CO2 is the key procedure. Among the many cat...Carboxylation of aromatics by CO2 to generate corresponding carboxylic acids is recently providing a novel approach to utilize the green gas CO2, in which the activation of CO2 is the key procedure. Among the many catalytic systems employed in the carboxylation, the concept of “Frustrated Lewis Pairs” (FLPs) was scarcely mentioned, which perform excellently in activating small molecules like CO2. The FLPs are combinations of Lewis acids and Lewis bases which failed to form adducts due to their bulky steric congestion. In this paper, we first attempted various Si/Al Based FLPs to catalyze the carboxylation of aromatics through the activation of CO2, and a good yield of 62% - 97% was obtained. The reaction mechanism was proposed, involving the activation of CO2 mainly contributed by AlCl3 in cooperation with organosilane, forming an intermediate consisting of CO2, AlCl3, and R4Si, as well as the subsequent electrophilic attack to aromatics, thus to promote the carboxylation reaction.展开更多
Methanol synthesis in a trickle bed reactor with tetraethylene glycol dimethyl ether (TEGDME) as the liquid phase over a Cu/Zn/Al2O3 catalyst was investigated. The pressure was kept constant at 5.0 MPa, while the temp...Methanol synthesis in a trickle bed reactor with tetraethylene glycol dimethyl ether (TEGDME) as the liquid phase over a Cu/Zn/Al2O3 catalyst was investigated. The pressure was kept constant at 5.0 MPa, while the temperature ranged from 230℃?to 260℃?and the mass space velocity varied between 294 L·Kg-1·h-1 and 1655 L·Kg-1·h-1. The effects of temperature and space velocity on CO conversion and methanol productivity were studied. Methanol synthesis processes in trickle bed with the TEGDME and paraffin oil as liquid phase were compared with the fixed bed process. The results indicated that the optimal temperature was approximately 240℃. When the space velocity was increased, the CO conversion decreased while the methanol productivity increased. The liquid introduced can help to keep the reactor nearly isothermal. For methanol synthesis in trickle-bed reactor, TEGDME was better than paraffin oil. Effect of TEGDME on the reaction was twofold. On one hand, it absorbs the methanol and speeds up the reaction. On the other hand, it also increases the mass transfer resistance and hinders the reaction.展开更多
The development and application of ex-situ presulfurization(EPRES)technology for hydrotreating catalysts has been reviewed in the present article.The studies in laboratory scale and commercial practice indicated that ...The development and application of ex-situ presulfurization(EPRES)technology for hydrotreating catalysts has been reviewed in the present article.The studies in laboratory scale and commercial practice indicated that the adoption of the EPRES catalyst in industrial application can significantly enhance the degree of presulfurization of metal oxide components,shorten the start-up period,and effectively reduce the environmental impact as well as the danger of start-up procedure in industrial hydrotreating unit.This catalyst has been proved to be versatile for different types of hydrogenation reactions.Different types of active site models are also discussed for better understanding the nature of presulfur-ized catalysts.展开更多
基金Supported by the National Natural Science Foundation of China(21276076)the Program for New Century Excellent Talents in University(NCET-13-0801)the"111"Project(B08021)
文摘A series of CuO/ZnO/Al_2O_3, CuO/ZnO/ZrO_2/Al_2O_3 and CuO/ZnO/CeO_2/Al_2O_3 catalysts were prepared by coprecipitation and characterized by N_2 adsorption, XRD, TPR, N_2O titration and HRTEM. The catalytic performances of these catalysts for the steam reforming of methanol were evaluated in a laboratory-scale fixed-bed reactor at 0.1 MPa and temperatures between 473 and 543 K. The results showed that the catalytic activity depended greatly on the catalyst reducibility and the specific surface area of Cu. An approximate linear correlation between the catalytic activity and the Cu surface area was found for all catalysts investigated in this study.Compared to CuO/ZnO/Al_2O_3, the ZrO_2-doped CuO/ZnO/Al_2O_3 exhibited higher activity and selectivity to CO,while the CeO_2-doped catalyst displayed lower activity and selectivity. Finally, an intrinsic kinetic study was carried out over a screened CuO/ZnO/CeO_2/Al_2O_3 catalyst in the absence of internal and external mass transfer effects. A good agreement was observed between the model-derived effluent concentrations of CO(CO_2) and the experimental data. The activation energies for the reactions of methanol-steam reforming, water-gas shift and methanol decomposition over CuO/ZnO/CeO_2/Al_2O_3 were 93.1, 85.1 and 116.5 k J·mol^(-1), respectively.
基金supported by the National Natural Science Foundation of China(21978093)。
文摘Vacuum gas oil(VGO)is the most important feedstock for hydrocracking processes in refineries,but its molecular composition cannot be fully acquired by current analysis techniques owing to its complexity.In order to build an accurate and reliable molecular-level kinetic model for reactor design and process optimization,the molecular composition of VGO has to be reconstructed based on limited measurements.In this study,a modified stochastic reconstruction-entropy maximization(SR-REM)algorithm was applied to reconstruct VGOs,with generation of a general molecule library once and for all via the SR method at the first step and adjustment of the molecular abundance of various VGOs via the REM method at the second step.The universality of the molecule library and the effectiveness of the modified SR-REM method were validated by fifteen VGOs(three from the literature)from different geographic regions of the world and with different properties.The simulated properties(density,elemental composition,paraffin-naphthene-aromatics distribution,boiling point distribution,detailed composition of naphthenes and aromatics in terms of ring number as well as composition of S-heterocycles)are in good agreement with the measured counterparts,showing average absolute relative errors of below 10%for each property.
文摘Carboxylation of aromatics by CO2 to generate corresponding carboxylic acids is recently providing a novel approach to utilize the green gas CO2, in which the activation of CO2 is the key procedure. Among the many catalytic systems employed in the carboxylation, the concept of “Frustrated Lewis Pairs” (FLPs) was scarcely mentioned, which perform excellently in activating small molecules like CO2. The FLPs are combinations of Lewis acids and Lewis bases which failed to form adducts due to their bulky steric congestion. In this paper, we first attempted various Si/Al Based FLPs to catalyze the carboxylation of aromatics through the activation of CO2, and a good yield of 62% - 97% was obtained. The reaction mechanism was proposed, involving the activation of CO2 mainly contributed by AlCl3 in cooperation with organosilane, forming an intermediate consisting of CO2, AlCl3, and R4Si, as well as the subsequent electrophilic attack to aromatics, thus to promote the carboxylation reaction.
文摘Methanol synthesis in a trickle bed reactor with tetraethylene glycol dimethyl ether (TEGDME) as the liquid phase over a Cu/Zn/Al2O3 catalyst was investigated. The pressure was kept constant at 5.0 MPa, while the temperature ranged from 230℃?to 260℃?and the mass space velocity varied between 294 L·Kg-1·h-1 and 1655 L·Kg-1·h-1. The effects of temperature and space velocity on CO conversion and methanol productivity were studied. Methanol synthesis processes in trickle bed with the TEGDME and paraffin oil as liquid phase were compared with the fixed bed process. The results indicated that the optimal temperature was approximately 240℃. When the space velocity was increased, the CO conversion decreased while the methanol productivity increased. The liquid introduced can help to keep the reactor nearly isothermal. For methanol synthesis in trickle-bed reactor, TEGDME was better than paraffin oil. Effect of TEGDME on the reaction was twofold. On one hand, it absorbs the methanol and speeds up the reaction. On the other hand, it also increases the mass transfer resistance and hinders the reaction.
文摘The development and application of ex-situ presulfurization(EPRES)technology for hydrotreating catalysts has been reviewed in the present article.The studies in laboratory scale and commercial practice indicated that the adoption of the EPRES catalyst in industrial application can significantly enhance the degree of presulfurization of metal oxide components,shorten the start-up period,and effectively reduce the environmental impact as well as the danger of start-up procedure in industrial hydrotreating unit.This catalyst has been proved to be versatile for different types of hydrogenation reactions.Different types of active site models are also discussed for better understanding the nature of presulfur-ized catalysts.