BACKGROUND Gastric cancer(GC)is a highly aggressive malignancy with a heterogeneous nature,which makes prognosis prediction and treatment determination difficult.Inflammation is now recognized as one of the hallmarks ...BACKGROUND Gastric cancer(GC)is a highly aggressive malignancy with a heterogeneous nature,which makes prognosis prediction and treatment determination difficult.Inflammation is now recognized as one of the hallmarks of cancer and plays an important role in the aetiology and continued growth of tumours.Inflammation also affects the prognosis of GC patients.Recent reports suggest that a number of inflammatory-related biomarkers are useful for predicting tumour prognosis.However,the importance of inflammatory-related biomarkers in predicting the prognosis of GC patients is still unclear.AIM To investigate inflammatory-related biomarkers in predicting the prognosis of GC patients.was constructed using the least absolute shrinkage and selection operator Cox regression model based on the GEO database.GC patients from the GSE26253 cohort were used for validation.Univariate and multivariate Cox analyses were used to determine the independent prognostic factors,and a prognostic nomogram was established.The calibration curve and the area under the curve based on receiver operating characteristic analysis were utilized to evaluate the predictive value of the nomogram.The decision curve analysis results were plotted to quantify and assess the clinical value of the nomogram.Gene set enrichment analysis was performed to explore the potential regulatory pathways involved.The relationship between tumour immune infiltration status and risk score was analysed via Tumour Immune Estimation Resource and CIBERSORT.Finally,we analysed the association between risk score and patient sensitivity to commonly used chemotherapy and targeted therapy agents.RESULTS A prognostic model consisting of three inflammatory-related genes(MRPS17,GUF1,and PDK4)was constructed.Independent prognostic analysis revealed that the risk score was a separate prognostic factor in GC patients.According to the risk score,GC patients were stratified into high-and low-risk groups,and patients in the high-risk group had significantly worse prognoses according to age,sex,TNM stage and Lauren type.Consensus clustering identified three subtypes of inflammation that could predict GC prognosis more accurately than traditional grading and staging.Finally,the study revealed that patients in the low-risk group were more sensitive to certain drugs than were those in the high-risk group,indicating a link between inflammation-related genes and drug sensitivity.CONCLUSION In conclusion,we established a novel three-gene prognostic signature that may be useful for predicting the prognosis and personalizing treatment decisions of GC patients.展开更多
A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multi...A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.展开更多
Cerebral blood flow is strongly associated with brain function, and is the main symptom and diagnostic basis for a variety of encephalopathies. However, changes in cerebral blood flow after mild traumatic brain injury...Cerebral blood flow is strongly associated with brain function, and is the main symptom and diagnostic basis for a variety of encephalopathies. However, changes in cerebral blood flow after mild traumatic brain injury remain poorly understood. This study sought to observe changes in cerebral blood flow in different regions after mild traumatic brain injury using pulsed arterial spin labeling. Our results demonstrate maximal cerebral blood flow in gray matter and minimal in the white matter of patients with mild traumatic brain injury. At the acute and subacute stages, cerebral blood flow was reduced in the occipital lobe, parietal lobe, central region, subcutaneous region, and frontal lobe. Cerebral blood flow was restored at the chronic stage. At the acute, subacute, and chronic stages, changes in cerebral blood flow were not apparent in the insula. Cerebral blood flow in the temporal lobe and limbic lobe diminished at the acute and subacute stages, but was restored at the chronic stage. These findings suggest that pulsed arterial spin labeling can precisely measure cerebral blood flow in various brain regions, and may play a reference role in evaluating a patient's condition and judging prognosis after traumatic brain injury.展开更多
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for...Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications.展开更多
Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herei...Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation.展开更多
The precision measurement of Doppler frequency shifts is of great significance for improving the precision of speed measurement.This paper proposes a precision measurement scheme of tiny Doppler shifts by a parametric...The precision measurement of Doppler frequency shifts is of great significance for improving the precision of speed measurement.This paper proposes a precision measurement scheme of tiny Doppler shifts by a parametric amplification process and squeezed vacuum state.This scheme takes a parametric amplification process and squeezed vacuum state into a detection system,so that the measurement precision of tiny Doppler shifts can exceed the Cram′er–Rao bound of coherent light.Simultaneously,a simulation study is carried out on the theoretical basis,and the following results are obtained:for the signal light of Gaussian mode,when the amplification factor g=1 and the squeezed factor r=0.5,the measurement error of Doppler frequency shifts is 14.4%of the Cramer–Rao bound of the coherent light in our system.At the same time,when the local light mode and squeezed vacuum state mode are optimized,the measurement precision of this scheme can be further improved by√(2n+1)/(n+1)times,where n is the mode-order of the signal light.展开更多
Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/-sodium-ion batteries.However,their tremendous volume expansion and inferior conductivity lead to poor structural...Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/-sodium-ion batteries.However,their tremendous volume expansion and inferior conductivity lead to poor structural stability and sluggish reaction kinetics.Herein,a doubleconfined nanoheterostructure Sb/Sb_(2)S_(3)@Ti_(3)C_(2)T_(x)@C has been fabricated through a solvothermal method followed by low-temperature heat treatment.The dual protection of“MXene”and“carbon”can better accommodate the volume expansion of Sb/Sb_(2)S_(3).The strong covalent bond(Ti-S,Ti-O-Sb,C-O-Sb)can firmly integrate Sb-based material with Ti_(3)C_(2)T_(x)and carbon,which significantly improves the structure stability.In addition,the carbon layer can restrain the oxidation of MXenes,and the nano-Sb/Sb_(2)S_(3)can facilitate electron/ion transport and suppress the restacking of MXenes.The heterogeneous interface between Sb and Sb_(2)S_(3)can further promote interfacial charge transfer.The MXene-Sb/Sb_(2)S_(3)@C-1 with the optimal Sb content shows high specific capacities,comparable rate properties and ultra-stable cycling performances(250 m Ah·g^(-1)after 2500 cycles at 1 A·g^(-1)for sodium-ion batteries).Ex situ X-ray diffractometer(XRD)test reveals the storage mechanism including the conversion and alloying process of MXene-Sb/Sb_(2)S_(3)@C-1.Cyclic voltammetry(CV)test results demonstrate that the pseudocapacitance behavior is dominant in MXene-Sb/Sb_(2)S_(3)@C-1,especially at large current.This design paves the way for exploring high-performance alloy-based/conversion-type anode for energy storage devices.展开更多
The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,...The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs.展开更多
The rational exploitation of non-precious metal catalyst with high activity,strong durability and low cost for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of vital importance for metalair ba...The rational exploitation of non-precious metal catalyst with high activity,strong durability and low cost for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of vital importance for metalair batteries.Herein,a composite of Co_(3)O_(4)nanoparticles confined in three-dimensional(3 D)N-doped porous carbon(Co-NpCs)was prepared by a simple freeze-drying and in situ pyrolysis method.The effect of different dosages of Co(NO_(3))_(2)on the catalytic performance was discussed.The Co-NpC-12%exhibits the best catalytic performance(E_(1/2)=0.78 V,better stability than 20%Pt/C)in ORR and in OER among all the as-synthesized samples.Furthermore,it also exhibits the best bifunctional activity(ΔE=0.849 V).The excellent properties of Co-NpCs are mainly due to the synergy between Co_(3)O_(4)and carbon.Firstly,a high Co_(3)O_(4)loading amount can boost the defect level of the N-doped hierarchical porous carbon and expose more active sites.Secondly,the unique in situ pyrolysis guarantees a largearea contact between Co_(3)O_(4)and carbon as well as a strong C-O-Co bonding,which promotes charge transfer,avoids the peeling of Co_(3)O_(4)nanoparticles and effectively improves the stability of the material.This work is expected to offer a feasible strategy to produce metal oxide/carbon nanocomposite and push forward the development of bifunctional electrocatalyst with high activity and stability.展开更多
The well cementing is important during the extended reach well drilling and the completion, whereas the displacement efficiency and the interface stability are important to guarantee the success of the cementing. In t...The well cementing is important during the extended reach well drilling and the completion, whereas the displacement efficiency and the interface stability are important to guarantee the success of the cementing. In this paper, the interface stability of the cement slurry is simulated using the computational fluid dynamics software. The calculation results indicate that during the displacement, the length of the displacement interface increases with the increase of the deviation angle. The larger the eccentricity, the more significant the velocity difference, along with a longer displacement interface length, a less stable interface, and a lower displacement efficiency. Therefore, to guarantee the cementing quality and maintain a high displacement efficiency, the eccentricity should be controlled within 0.5. Application of a casing centralizer will dramatically improve the interface stability, decrease the dilution zone length of the interface and thus, is beneficial to the slurry cementing and displacement. The simulations are verified with an average absolute deviation less than 3.76% and the 45? helix angle of the rigid centralizer is recommended. Combining the data of an extended reach well on-site, methods are proposed for improving the displacement efficiency and the interface stability during the well cementing and displacement with complex boreholes. These numerical methods can be used to provide some theoretical guidance for designing the cementing of an extended reach well.展开更多
Carbonaceous materials are promising anode candidates for potassium-ion batteries, but currently the unsatisfactory cycling and rate performances due to the sluggish diffusion kinetic and serious structure damage duri...Carbonaceous materials are promising anode candidates for potassium-ion batteries, but currently the unsatisfactory cycling and rate performances due to the sluggish diffusion kinetic and serious structure damage during K+ insertion/extraction limit their practical application. Herein, a series of sulfur-doped porous carbons(SPCs) were prepared via a template-assisted freeze-drying followed by the carbonization and sulfuration processes at different temperatures. Among the three as-synthesized samples, SPC-600 exhibits the highest specific capacity(407 mAh·g^(-1) at 0.10 A·g^(-1)), the best rate(242 mAh·g^(-1) at 2.00 A·g^(-1)) and cycling performance(286 m Ah·g^(-1) after 800 cycles at 0.50 A·g^(-1)). All the SPCs display higher capacities than the undoped carbon materials. The excellent electrochemical performance of SPC can be ascribed to the abundant three-dimensional porous structure together with S-doping in the disordered carbon, which is favor of providing adequate reaction active sites as well as fast ion/electron transport paths. The density functional theory(DFT) calculations further demonstrate that the sulfurdoping can promote K-ion adsorption and storage. Meanwhile, the kinetic analyses reveal that surface-induced capacitive mechanism dominates the K-ion storage process in SPCs, which contributes to ultrafast charge storage. This work provides an effective strategy for fabricating highperformance potassium-ion storage electrode materials.展开更多
High entropy oxides(HEOs),as a new type of single-phase multielement solid solution materials,have shown many attractive features and promising application prospect in the energy storage fleld.Herein,six-element HEOs(...High entropy oxides(HEOs),as a new type of single-phase multielement solid solution materials,have shown many attractive features and promising application prospect in the energy storage fleld.Herein,six-element HEOs(CoNiZnFeMnLi)_(3)O_(4) and(CoNiZnCrMnLi)_(3)O_(4) with spinel structure are successfully prepared by con-ventional solid-phase method and present outstanding lithium storage performances due to the synergy effect of various electrochemically active elements and the entropy stabilization.By contrast,(CoNiZnFeMnLi)_(3)O_(4) delivers higher initial discharge specific capacity of 1104.3 mAh·g^(−1),better cycle stability(84%capacity retention after 100 cycles at 100 mA·g^(−1)) and rate performance(293 mAh·g^(−1)at 2000 mA·g^(−1))in the half-cell.Moreover,the full-cell assembled with(CoNiZnFeMnLi)_(3)O_(4) and LiCoO_(2)provides a reversible specific capacity of 260.2 mAh·g^(−1)after 100 cycles at 500 mA·g^(−1).Ex situ X-ray diffraction reveals the electrochemical reaction mechanism of HEOs(CoNiZnFeMnLi)_(3)O_(4),and the amorphous phase and the large amount of oxygen vacancies were obtained after the initial discharge process,which are responsible for the excellent cycle and rate performance.This research puts forward fresh insights for the development of advanced energy storage materials for high-performance batteries.展开更多
Background: Pulmonary stenosis is common in children with complex congenital heart diseases. Proper management of this problem, especially postoperatively, is still controversial. This study was designed to assess th...Background: Pulmonary stenosis is common in children with complex congenital heart diseases. Proper management of this problem, especially postoperatively, is still controversial. This study was designed to assess the rate and determinants of success or failure of balloon angioplasty for such lesions. Methods: Clinical and hemodynamic data from 40 pediatric patients (24 boys and 16 girls) with complex congenital heart diseases who underwent balloon angioplasty were reviewed retrospectively from January 2012 to December 2016. Patients were divided into four groups according to the site of stenosis, which included pulmonary valve stenosis (PVS), valved conduit stenosis, pulmonary artery stenosis (PAS), and supravalvular pulmonary stenosis (SVPS). Success rates were calculated according to defined criteria for initial success and favorable clinical impacts, and comparison between the successful subgroup and the unsuccessful subgroups was analyzed. Results: Grouped by the site of stenosis, initial success rates varied from 40.0% to 52.4% with the greatest success being seen in the PVS group, followed by the PAS group and SVPS group. In the PVS group and the PAS group, there was no statistical difference among age at dilation, postoperative interval, balloon/stenosis ratio, or pressure gradient predilation between the successful and the unsuccessful subgroups. Favorable clinical impacts included success rates of balloon angioplasty in the SVPS group, which was best (100%), followed by the PVS group (90.9%) and the PAS group (85.7%). There were a total of two transient complications (5.0%). Conclusions: Balloon angioplasty was proven to be a safe and useful modality in children with complex congenital heart diseases and postoperative pulmonary stenosis, which should be the initial therapeutic modality in selected patients.展开更多
Photothermal therapy(PTT)is a minimally invasive treatment that kills cancer cells by converting photon energy into heat.The past few decades have witnessed the booming development of photothermal materials,mainly foc...Photothermal therapy(PTT)is a minimally invasive treatment that kills cancer cells by converting photon energy into heat.The past few decades have witnessed the booming development of photothermal materials,mainly focusing on precious metal nanomaterials and carbon nanomaterials,such as nanogold and silver and nanocarbon materials for near-infrared(NIR)light-triggered PTF.As precious metals are expensive and potentially harmful to humans,exploration and development of a new type of photothermal materials has become a research hotspot in this field.Herein,we report narrow bandgap conjugated polymer nanoparticles(PDPP NPs)based on pyrrolo[3,4-c]pyrrole-1,4-dione(DPP)with intense NIR absorption at 900 nm,as well as a photothermal energy conversion efficiency of 75%.This polymer nanoparticle is essentially non-toxic,as the cell viability of mouse remained more than 90%,even when the concentration of PDPP NPs was at 0.5 mg·mL^-1.展开更多
An artificial intelligence enhanced star identification algorithm is proposed for star trackers in lost-inspace mode.A convolutional neural network model based on Vgg16 is used in the artificial intelligence algorithm...An artificial intelligence enhanced star identification algorithm is proposed for star trackers in lost-inspace mode.A convolutional neural network model based on Vgg16 is used in the artificial intelligence algorithm to classify star images.The training dataset is constructed to achieve the networks’optimal performance.Simulation results show that the proposed algorithm is highly robust to many kinds of noise,including position noise,magnitude noise,false stars,and the tracker’s angular velocity.With a deep convolutional neural network,the identification accuracy is maintained at 96%despite noise and interruptions,which is a significant improvement to traditional pyramid and grid algorithms.展开更多
Li4Ti5O12 was synthesized by a facile gel-combustion method(GCM) with polyvinylpyrrolidone(PVP) as the polymer chelating agent and fuel.The structural and electrochemical properties of the sample were compared wit...Li4Ti5O12 was synthesized by a facile gel-combustion method(GCM) with polyvinylpyrrolidone(PVP) as the polymer chelating agent and fuel.The structural and electrochemical properties of the sample were compared with the one prepared by the conventional solid-state reaction(SSR) through X-ray diffraction(XRD),scanning electron microscopy(SEM),cyclic voltammetry(CV),charge-discharge measurements,and electrochemical impedance spectroscopy(EIS),respectively.The sub-microscale Li4Ti5O12 oxides,with a high phase purity and good stoichiometry,can be obtained by annealing at 800℃.The grain size is smaller than that of the samples that were power prepared by SSR.Lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6,160.7,152.9,and 144.2 mAh/g,at the current densities of 0.5 C,1 C,3 C and 5 C,respectively.The excellent cycling and rate performance can be attributed to the smaller particle size,lower charge-transfer resistance and larger lithium ion diffusion coefficient.It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in highrate lithium ion batteries.展开更多
Infrared Earth sensors are widely used in attitude-determination and control systems of satellites.The main deficiency of static infrared Earth sensors is the requirement of a small field of view(FOV).A typical FOV fo...Infrared Earth sensors are widely used in attitude-determination and control systems of satellites.The main deficiency of static infrared Earth sensors is the requirement of a small field of view(FOV).A typical FOV for a static infrared Earth sensor is about 20°to 30°,which may not be sufficient for low-Earth-orbiting microsatellites.A novel compact infrared Earth sensor with an FOV of nearly 180°is developed here.The Earth sensor comprises a panoramic annular lens(PAL)and an off-the-shelf camera with an uncooled complementary-metaloxide-semiconductor(CMOS)infrared sensor.PAL is used to augment FOV so as to obtain a complete infrared image of the Earth from low-Earth-orbit.An algorithm is developed to compensate for the distortion caused by PAL and to calculate the vector of the Earth.The new infrared Earth sensor is compact with low power consumption and high precision.Simulated images and on-orbit infrared images obtained via the micro-satellite ZDPS-2 are used to assess the performance of the new infrared Earth sensor.Experiments show that the accuracy of the Earth sensor is about 0.032°.展开更多
A series of polymer photodetectors with device configuration of ITO/PEDOT:PSS/P_(3)HT:PC_(61)BM/C_(60)/AI were prepared by using P3HT as the donor material and PC61BM as the acceptor material.By regulating the content...A series of polymer photodetectors with device configuration of ITO/PEDOT:PSS/P_(3)HT:PC_(61)BM/C_(60)/AI were prepared by using P3HT as the donor material and PC61BM as the acceptor material.By regulating the content of 1,8-diiodooctane(DIO)(V/V:1%,3%,5%)as a processing additive,the morphology of the active layer can be greatly improved With Ceo as the hole blocking layer,the dark current density of the device can be reduced by about an order of magnitude.When employing 3%DIO(V/V)in the active layer processing,the photodetetcors present the best performance,and the detectivity of the device is 1.52×10^(12)Jones at 540 nm under a bias of-0.1 V.Moreover,it also has a wider linear dynamic range of 60 dB as well as faster response speed(T1/T2=0.53/0.71μs)than those of devices with other content of DIO additives.展开更多
文摘BACKGROUND Gastric cancer(GC)is a highly aggressive malignancy with a heterogeneous nature,which makes prognosis prediction and treatment determination difficult.Inflammation is now recognized as one of the hallmarks of cancer and plays an important role in the aetiology and continued growth of tumours.Inflammation also affects the prognosis of GC patients.Recent reports suggest that a number of inflammatory-related biomarkers are useful for predicting tumour prognosis.However,the importance of inflammatory-related biomarkers in predicting the prognosis of GC patients is still unclear.AIM To investigate inflammatory-related biomarkers in predicting the prognosis of GC patients.was constructed using the least absolute shrinkage and selection operator Cox regression model based on the GEO database.GC patients from the GSE26253 cohort were used for validation.Univariate and multivariate Cox analyses were used to determine the independent prognostic factors,and a prognostic nomogram was established.The calibration curve and the area under the curve based on receiver operating characteristic analysis were utilized to evaluate the predictive value of the nomogram.The decision curve analysis results were plotted to quantify and assess the clinical value of the nomogram.Gene set enrichment analysis was performed to explore the potential regulatory pathways involved.The relationship between tumour immune infiltration status and risk score was analysed via Tumour Immune Estimation Resource and CIBERSORT.Finally,we analysed the association between risk score and patient sensitivity to commonly used chemotherapy and targeted therapy agents.RESULTS A prognostic model consisting of three inflammatory-related genes(MRPS17,GUF1,and PDK4)was constructed.Independent prognostic analysis revealed that the risk score was a separate prognostic factor in GC patients.According to the risk score,GC patients were stratified into high-and low-risk groups,and patients in the high-risk group had significantly worse prognoses according to age,sex,TNM stage and Lauren type.Consensus clustering identified three subtypes of inflammation that could predict GC prognosis more accurately than traditional grading and staging.Finally,the study revealed that patients in the low-risk group were more sensitive to certain drugs than were those in the high-risk group,indicating a link between inflammation-related genes and drug sensitivity.CONCLUSION In conclusion,we established a novel three-gene prognostic signature that may be useful for predicting the prognosis and personalizing treatment decisions of GC patients.
基金The work was supported by the National Natural Science Foundation of China(No.51874045)National Natural Science Foundation-Youth Foundation(52104056)+2 种基金Department of Natural Resources of Guangdong Province(GDNRC[2021]56)Postdoctoral innovative talents support program in China(BX2021374)Scientific Research Program of Hubei Provincial Department of Education(T2021004).
文摘A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.
文摘Cerebral blood flow is strongly associated with brain function, and is the main symptom and diagnostic basis for a variety of encephalopathies. However, changes in cerebral blood flow after mild traumatic brain injury remain poorly understood. This study sought to observe changes in cerebral blood flow in different regions after mild traumatic brain injury using pulsed arterial spin labeling. Our results demonstrate maximal cerebral blood flow in gray matter and minimal in the white matter of patients with mild traumatic brain injury. At the acute and subacute stages, cerebral blood flow was reduced in the occipital lobe, parietal lobe, central region, subcutaneous region, and frontal lobe. Cerebral blood flow was restored at the chronic stage. At the acute, subacute, and chronic stages, changes in cerebral blood flow were not apparent in the insula. Cerebral blood flow in the temporal lobe and limbic lobe diminished at the acute and subacute stages, but was restored at the chronic stage. These findings suggest that pulsed arterial spin labeling can precisely measure cerebral blood flow in various brain regions, and may play a reference role in evaluating a patient's condition and judging prognosis after traumatic brain injury.
基金financially supported by the National Natural Science Foundation of China(Nos.51871046,51902046,52071073,51874079,51571054,51771046,and 51674068)the Natural Science Foundation of Liaoning Province,China(No.201602257)+2 种基金Natural Science Foundation of Hebei Province,China(Nos.E2019501097,E2018501091,E2020501004)the Science and Technology Project of Hebei Province,China(No.15271302D)the Fundamental Research Funds for the Central Universities,China(Nos.N182304017,N182304015,N172302001,N172304044).
文摘Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications.
基金financially supported by the National Natural Science Foundation of China(51974353,51991362)Natural Science Foundation of Shandong Province(ZR2019ZD14)CNPC’s Major Science and Technology Projects(ZD2019-184-003)。
文摘Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation.
文摘The precision measurement of Doppler frequency shifts is of great significance for improving the precision of speed measurement.This paper proposes a precision measurement scheme of tiny Doppler shifts by a parametric amplification process and squeezed vacuum state.This scheme takes a parametric amplification process and squeezed vacuum state into a detection system,so that the measurement precision of tiny Doppler shifts can exceed the Cram′er–Rao bound of coherent light.Simultaneously,a simulation study is carried out on the theoretical basis,and the following results are obtained:for the signal light of Gaussian mode,when the amplification factor g=1 and the squeezed factor r=0.5,the measurement error of Doppler frequency shifts is 14.4%of the Cramer–Rao bound of the coherent light in our system.At the same time,when the local light mode and squeezed vacuum state mode are optimized,the measurement precision of this scheme can be further improved by√(2n+1)/(n+1)times,where n is the mode-order of the signal light.
基金supported by the National Natural Science Foundation of China(Nos.52071073,52177208,52171202 and 51971055)Hebei Province"333 talent project"(No.C20221012)+2 种基金the Natural Science Foundation of Hebei Province(No.E2020501004)the Fundamental Research Funds for the Central Universities(No.N2123032)the Science and Technology Project of Hebei Education Department(No.BJK2023005)。
文摘Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/-sodium-ion batteries.However,their tremendous volume expansion and inferior conductivity lead to poor structural stability and sluggish reaction kinetics.Herein,a doubleconfined nanoheterostructure Sb/Sb_(2)S_(3)@Ti_(3)C_(2)T_(x)@C has been fabricated through a solvothermal method followed by low-temperature heat treatment.The dual protection of“MXene”and“carbon”can better accommodate the volume expansion of Sb/Sb_(2)S_(3).The strong covalent bond(Ti-S,Ti-O-Sb,C-O-Sb)can firmly integrate Sb-based material with Ti_(3)C_(2)T_(x)and carbon,which significantly improves the structure stability.In addition,the carbon layer can restrain the oxidation of MXenes,and the nano-Sb/Sb_(2)S_(3)can facilitate electron/ion transport and suppress the restacking of MXenes.The heterogeneous interface between Sb and Sb_(2)S_(3)can further promote interfacial charge transfer.The MXene-Sb/Sb_(2)S_(3)@C-1 with the optimal Sb content shows high specific capacities,comparable rate properties and ultra-stable cycling performances(250 m Ah·g^(-1)after 2500 cycles at 1 A·g^(-1)for sodium-ion batteries).Ex situ X-ray diffractometer(XRD)test reveals the storage mechanism including the conversion and alloying process of MXene-Sb/Sb_(2)S_(3)@C-1.Cyclic voltammetry(CV)test results demonstrate that the pseudocapacitance behavior is dominant in MXene-Sb/Sb_(2)S_(3)@C-1,especially at large current.This design paves the way for exploring high-performance alloy-based/conversion-type anode for energy storage devices.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.52177208,52171202,51971055 and 51871046)the National Safety Academic Fund(Nos.U1930208,U2030206 and U1730136).
文摘The high energy density and stability of solid-state lithium metal batteries(SSLMBs)have garnered great attention.Garnet-type oxides,especially Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),with high ionic conductivity,wide electrochemical window,and stability to Li metal anode,are promising solid-state electrolyte(SSEs)materials for SSLMBs.However,Li/LLZTO interface issues including high interface resistance,inhomogeneous Li deposition,and Li dendrite growth have hindered the practical application of SSLMBs.Herein,a multi-functional Li–SnF_(2) composite anode with Li,LiF,and Li-Sn alloy was specifically designed and prepared.The composite anode improves the wettability to LLZTO,constructing an intimate contact interface between it and LLZTO.Meanwhile,ionic/electronic conductive paths in situ formed at the interface can effectively uniform Li deposition and suppress Li dendrite.The solid-state symmetric cell exhibits low interface resistance(11Ω·cm^(2)) and high critical current density(1.3 mA·cm^(−2))at 25℃.The full SSLMB based on LiFePO_(4) or LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) cathode also shows stable cycling performance and high rate capability.This work provides a new composite anode strategy for achieving high-energy density and high-safety SSLMBs.
基金the National Natural Science Foundation of China(Nos.51871046,51902046,51874079,51571054,51771046 and 51674068)the Natural Science Foundation of Liaoning Province(No.201602257)+1 种基金the Natural Science Foundation of Hebei Province(Nos.E2019501097,E2018501091 and E2020501004)the Fundamental Research Funds for the Central Universities(Nos.N182304017,N182304015,N172302001 and N172304044)。
文摘The rational exploitation of non-precious metal catalyst with high activity,strong durability and low cost for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is of vital importance for metalair batteries.Herein,a composite of Co_(3)O_(4)nanoparticles confined in three-dimensional(3 D)N-doped porous carbon(Co-NpCs)was prepared by a simple freeze-drying and in situ pyrolysis method.The effect of different dosages of Co(NO_(3))_(2)on the catalytic performance was discussed.The Co-NpC-12%exhibits the best catalytic performance(E_(1/2)=0.78 V,better stability than 20%Pt/C)in ORR and in OER among all the as-synthesized samples.Furthermore,it also exhibits the best bifunctional activity(ΔE=0.849 V).The excellent properties of Co-NpCs are mainly due to the synergy between Co_(3)O_(4)and carbon.Firstly,a high Co_(3)O_(4)loading amount can boost the defect level of the N-doped hierarchical porous carbon and expose more active sites.Secondly,the unique in situ pyrolysis guarantees a largearea contact between Co_(3)O_(4)and carbon as well as a strong C-O-Co bonding,which promotes charge transfer,avoids the peeling of Co_(3)O_(4)nanoparticles and effectively improves the stability of the material.This work is expected to offer a feasible strategy to produce metal oxide/carbon nanocomposite and push forward the development of bifunctional electrocatalyst with high activity and stability.
基金Project supported by the National Basic Research Deve-lopment Program of China(973 Program,2015CB251200)the National Science and Technology Major Project(Grant No.2016ZX05020-006)the Changjiang Scholars and Innovative Research Team in University Project(Grant No.IRT_14R58)
文摘The well cementing is important during the extended reach well drilling and the completion, whereas the displacement efficiency and the interface stability are important to guarantee the success of the cementing. In this paper, the interface stability of the cement slurry is simulated using the computational fluid dynamics software. The calculation results indicate that during the displacement, the length of the displacement interface increases with the increase of the deviation angle. The larger the eccentricity, the more significant the velocity difference, along with a longer displacement interface length, a less stable interface, and a lower displacement efficiency. Therefore, to guarantee the cementing quality and maintain a high displacement efficiency, the eccentricity should be controlled within 0.5. Application of a casing centralizer will dramatically improve the interface stability, decrease the dilution zone length of the interface and thus, is beneficial to the slurry cementing and displacement. The simulations are verified with an average absolute deviation less than 3.76% and the 45? helix angle of the rigid centralizer is recommended. Combining the data of an extended reach well on-site, methods are proposed for improving the displacement efficiency and the interface stability during the well cementing and displacement with complex boreholes. These numerical methods can be used to provide some theoretical guidance for designing the cementing of an extended reach well.
基金financially supported by the National Natural Science Foundation of China(Nos.51871046,51902046,52071073,51874079,51571054,51771046 and 51674068)the Natural Science Foundation of Liaoning Province(No.201602257)+5 种基金the Natural Science Foundation of Hebei Province(Nos.E2019501097,E2018501091 and E2020501004)the Science and Technology Project of Hebei Province(No.15271302D)the Training Foundation for Scientific Research of Talents Project Hebei Province(No.A2016005004)the Young Talents Program in University of Hebei Province(No.BJ2018014)Hebei Province Higher Education Science and Technology Research Project(No.QN2017103)the Fundamental Research Funds for the Central Universities(Nos.N182304017,N182304015,N172302001 and N172304044)。
文摘Carbonaceous materials are promising anode candidates for potassium-ion batteries, but currently the unsatisfactory cycling and rate performances due to the sluggish diffusion kinetic and serious structure damage during K+ insertion/extraction limit their practical application. Herein, a series of sulfur-doped porous carbons(SPCs) were prepared via a template-assisted freeze-drying followed by the carbonization and sulfuration processes at different temperatures. Among the three as-synthesized samples, SPC-600 exhibits the highest specific capacity(407 mAh·g^(-1) at 0.10 A·g^(-1)), the best rate(242 mAh·g^(-1) at 2.00 A·g^(-1)) and cycling performance(286 m Ah·g^(-1) after 800 cycles at 0.50 A·g^(-1)). All the SPCs display higher capacities than the undoped carbon materials. The excellent electrochemical performance of SPC can be ascribed to the abundant three-dimensional porous structure together with S-doping in the disordered carbon, which is favor of providing adequate reaction active sites as well as fast ion/electron transport paths. The density functional theory(DFT) calculations further demonstrate that the sulfurdoping can promote K-ion adsorption and storage. Meanwhile, the kinetic analyses reveal that surface-induced capacitive mechanism dominates the K-ion storage process in SPCs, which contributes to ultrafast charge storage. This work provides an effective strategy for fabricating highperformance potassium-ion storage electrode materials.
基金the National Natural Science Foundation of China(Nos.51902046,51871046,52071073,51771046 and 51971055)Natural Science Foundation of Hebei Province(Nos.E2019501097,E2018501091 and E2020501004)+1 种基金the Science and Technology Project of Hebei Province(No.15271302D)Funds for the Central Universities(N2123032)。
文摘High entropy oxides(HEOs),as a new type of single-phase multielement solid solution materials,have shown many attractive features and promising application prospect in the energy storage fleld.Herein,six-element HEOs(CoNiZnFeMnLi)_(3)O_(4) and(CoNiZnCrMnLi)_(3)O_(4) with spinel structure are successfully prepared by con-ventional solid-phase method and present outstanding lithium storage performances due to the synergy effect of various electrochemically active elements and the entropy stabilization.By contrast,(CoNiZnFeMnLi)_(3)O_(4) delivers higher initial discharge specific capacity of 1104.3 mAh·g^(−1),better cycle stability(84%capacity retention after 100 cycles at 100 mA·g^(−1)) and rate performance(293 mAh·g^(−1)at 2000 mA·g^(−1))in the half-cell.Moreover,the full-cell assembled with(CoNiZnFeMnLi)_(3)O_(4) and LiCoO_(2)provides a reversible specific capacity of 260.2 mAh·g^(−1)after 100 cycles at 500 mA·g^(−1).Ex situ X-ray diffraction reveals the electrochemical reaction mechanism of HEOs(CoNiZnFeMnLi)_(3)O_(4),and the amorphous phase and the large amount of oxygen vacancies were obtained after the initial discharge process,which are responsible for the excellent cycle and rate performance.This research puts forward fresh insights for the development of advanced energy storage materials for high-performance batteries.
文摘Background: Pulmonary stenosis is common in children with complex congenital heart diseases. Proper management of this problem, especially postoperatively, is still controversial. This study was designed to assess the rate and determinants of success or failure of balloon angioplasty for such lesions. Methods: Clinical and hemodynamic data from 40 pediatric patients (24 boys and 16 girls) with complex congenital heart diseases who underwent balloon angioplasty were reviewed retrospectively from January 2012 to December 2016. Patients were divided into four groups according to the site of stenosis, which included pulmonary valve stenosis (PVS), valved conduit stenosis, pulmonary artery stenosis (PAS), and supravalvular pulmonary stenosis (SVPS). Success rates were calculated according to defined criteria for initial success and favorable clinical impacts, and comparison between the successful subgroup and the unsuccessful subgroups was analyzed. Results: Grouped by the site of stenosis, initial success rates varied from 40.0% to 52.4% with the greatest success being seen in the PVS group, followed by the PAS group and SVPS group. In the PVS group and the PAS group, there was no statistical difference among age at dilation, postoperative interval, balloon/stenosis ratio, or pressure gradient predilation between the successful and the unsuccessful subgroups. Favorable clinical impacts included success rates of balloon angioplasty in the SVPS group, which was best (100%), followed by the PVS group (90.9%) and the PAS group (85.7%). There were a total of two transient complications (5.0%). Conclusions: Balloon angioplasty was proven to be a safe and useful modality in children with complex congenital heart diseases and postoperative pulmonary stenosis, which should be the initial therapeutic modality in selected patients.
基金This work was financially supported by the National Natural Science Foundation of China(No.21474105)and the Project of the Natural Science and En-gineering Research Council of Canada.
文摘Photothermal therapy(PTT)is a minimally invasive treatment that kills cancer cells by converting photon energy into heat.The past few decades have witnessed the booming development of photothermal materials,mainly focusing on precious metal nanomaterials and carbon nanomaterials,such as nanogold and silver and nanocarbon materials for near-infrared(NIR)light-triggered PTF.As precious metals are expensive and potentially harmful to humans,exploration and development of a new type of photothermal materials has become a research hotspot in this field.Herein,we report narrow bandgap conjugated polymer nanoparticles(PDPP NPs)based on pyrrolo[3,4-c]pyrrole-1,4-dione(DPP)with intense NIR absorption at 900 nm,as well as a photothermal energy conversion efficiency of 75%.This polymer nanoparticle is essentially non-toxic,as the cell viability of mouse remained more than 90%,even when the concentration of PDPP NPs was at 0.5 mg·mL^-1.
基金the National Natural Science Foundation of China(No.6152403)。
文摘An artificial intelligence enhanced star identification algorithm is proposed for star trackers in lost-inspace mode.A convolutional neural network model based on Vgg16 is used in the artificial intelligence algorithm to classify star images.The training dataset is constructed to achieve the networks’optimal performance.Simulation results show that the proposed algorithm is highly robust to many kinds of noise,including position noise,magnitude noise,false stars,and the tracker’s angular velocity.With a deep convolutional neural network,the identification accuracy is maintained at 96%despite noise and interruptions,which is a significant improvement to traditional pyramid and grid algorithms.
基金supported by the National Natural Science Foundation of China(No.51374056)the support program for hundreds of outstanding innovative talents in Higher Education Institutions of Hebei Province(Ⅱ)(No.BR2-127)+2 种基金Natural Science Foundation of Hebei Province(No.E2013501135)program for New Century Excellent Talents in University(No.NCET-10-0304)The Special Fund for Basic Scientific Research of Central Colleges, Northeastern University(Nos.N100123003 and N120523001)
文摘Li4Ti5O12 was synthesized by a facile gel-combustion method(GCM) with polyvinylpyrrolidone(PVP) as the polymer chelating agent and fuel.The structural and electrochemical properties of the sample were compared with the one prepared by the conventional solid-state reaction(SSR) through X-ray diffraction(XRD),scanning electron microscopy(SEM),cyclic voltammetry(CV),charge-discharge measurements,and electrochemical impedance spectroscopy(EIS),respectively.The sub-microscale Li4Ti5O12 oxides,with a high phase purity and good stoichiometry,can be obtained by annealing at 800℃.The grain size is smaller than that of the samples that were power prepared by SSR.Lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6,160.7,152.9,and 144.2 mAh/g,at the current densities of 0.5 C,1 C,3 C and 5 C,respectively.The excellent cycling and rate performance can be attributed to the smaller particle size,lower charge-transfer resistance and larger lithium ion diffusion coefficient.It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in highrate lithium ion batteries.
基金Project supported by the National Science Fund for Distinguished Young Scholars,China(No.6152403)。
文摘Infrared Earth sensors are widely used in attitude-determination and control systems of satellites.The main deficiency of static infrared Earth sensors is the requirement of a small field of view(FOV).A typical FOV for a static infrared Earth sensor is about 20°to 30°,which may not be sufficient for low-Earth-orbiting microsatellites.A novel compact infrared Earth sensor with an FOV of nearly 180°is developed here.The Earth sensor comprises a panoramic annular lens(PAL)and an off-the-shelf camera with an uncooled complementary-metaloxide-semiconductor(CMOS)infrared sensor.PAL is used to augment FOV so as to obtain a complete infrared image of the Earth from low-Earth-orbit.An algorithm is developed to compensate for the distortion caused by PAL and to calculate the vector of the Earth.The new infrared Earth sensor is compact with low power consumption and high precision.Simulated images and on-orbit infrared images obtained via the micro-satellite ZDPS-2 are used to assess the performance of the new infrared Earth sensor.Experiments show that the accuracy of the Earth sensor is about 0.032°.
文摘A series of polymer photodetectors with device configuration of ITO/PEDOT:PSS/P_(3)HT:PC_(61)BM/C_(60)/AI were prepared by using P3HT as the donor material and PC61BM as the acceptor material.By regulating the content of 1,8-diiodooctane(DIO)(V/V:1%,3%,5%)as a processing additive,the morphology of the active layer can be greatly improved With Ceo as the hole blocking layer,the dark current density of the device can be reduced by about an order of magnitude.When employing 3%DIO(V/V)in the active layer processing,the photodetetcors present the best performance,and the detectivity of the device is 1.52×10^(12)Jones at 540 nm under a bias of-0.1 V.Moreover,it also has a wider linear dynamic range of 60 dB as well as faster response speed(T1/T2=0.53/0.71μs)than those of devices with other content of DIO additives.