WS2 has been considered as a promising anode material due to its high lithium storage capacity as well as fascinating physical properties. However, the insufficient electrical and ionic conductivities deteriorate the ...WS2 has been considered as a promising anode material due to its high lithium storage capacity as well as fascinating physical properties. However, the insufficient electrical and ionic conductivities deteriorate the rate per- formance of the batteries. Herein, we report a simple synthetic approach towards graphene-WS2 hybrids by rolling graphene into a hollow nanotube in which WSz nanoplates are en- capsulated. This new electrode design strategy facilitates the fabrication of integrated and binder-free lithium ion battery and sodium ion battery electrodes by combining electrospin- ning and chemical vapor deposition (CVD) methods. Bene- fiting from their confined growth and the interconnected in- situ graphitic carbon coating nanocable web, the WS2@G with nano-level WS2 dispersion not only provides an efficiently conductive and electrolyte accessible framework, but effec- tively alleviates the volume change during the cycling, en- abling a mechanically robust binder-free electrode along with the outstanding electrochemical Li+ and Na+ storage proper- ties.展开更多
Single cobalt atom is promising non-precious metal catalyst instead of Pt in the oxygen reduction reaction(ORR).However,it is still a great challenge to develop a costeffective,ultrastable and efficent single-atom cob...Single cobalt atom is promising non-precious metal catalyst instead of Pt in the oxygen reduction reaction(ORR).However,it is still a great challenge to develop a costeffective,ultrastable and efficent single-atom cobalt catalyst for ORR,requiring efficient fabrication strategies and robust support to stabilize the single cobalt atom.Here,we prepared a highly active and stable atomically isolated cobalt catalyst via covalent triazine framework(CTF)support with Ketjen Black(KB)hybridization in scale.The prepared single Co catalyst(Co-CTF/KB)possesses high metal loading over 4 wt%and shows superior ORR performance with a half-wave potential(E1/2)of 0.830 V and a limiting current density of 6.14 mA cm-2 as well as high tolerance of methanol in an alkaline medium,which outperforms commercial Pt/C and most non-precious-metal catalysts reported to date.Benefiting from strong stabilization of Co atoms on CTF,Co-CTF/KB shows outstanding stability with only 5 mV negative shifts after 10,000 cycles.Moreover,it also displays high catalytic activity for oxygen evolution reaction(OER),suggesting it is an efficient ORR/OER bifunctional catalyst.The present work provides a facile strategy for preparing single-atom catalysts in bulk quantity and contributes to development of catalysts for electrochemical conversion and storage devices.展开更多
基金supported by the Ministry of Science and Technology of China (2012CB933403)the National Natural Science Foundation of China (51425302, 51302045 and 5170021056)+2 种基金Beijing Municipal Science and Technology Commission (Z121100006812003)the Opening Project of State Key Laboratory of Advanced Technology for Float Glassthe Chinese Academy of Sciences
文摘WS2 has been considered as a promising anode material due to its high lithium storage capacity as well as fascinating physical properties. However, the insufficient electrical and ionic conductivities deteriorate the rate per- formance of the batteries. Herein, we report a simple synthetic approach towards graphene-WS2 hybrids by rolling graphene into a hollow nanotube in which WSz nanoplates are en- capsulated. This new electrode design strategy facilitates the fabrication of integrated and binder-free lithium ion battery and sodium ion battery electrodes by combining electrospin- ning and chemical vapor deposition (CVD) methods. Bene- fiting from their confined growth and the interconnected in- situ graphitic carbon coating nanocable web, the WS2@G with nano-level WS2 dispersion not only provides an efficiently conductive and electrolyte accessible framework, but effec- tively alleviates the volume change during the cycling, en- abling a mechanically robust binder-free electrode along with the outstanding electrochemical Li+ and Na+ storage proper- ties.
基金supported by the Ministry of Science and Technology of China (2012CB933403)the National Natural Science Foundation of China (51425302 and 51302045)the Chinese Academy of Sciences
文摘Single cobalt atom is promising non-precious metal catalyst instead of Pt in the oxygen reduction reaction(ORR).However,it is still a great challenge to develop a costeffective,ultrastable and efficent single-atom cobalt catalyst for ORR,requiring efficient fabrication strategies and robust support to stabilize the single cobalt atom.Here,we prepared a highly active and stable atomically isolated cobalt catalyst via covalent triazine framework(CTF)support with Ketjen Black(KB)hybridization in scale.The prepared single Co catalyst(Co-CTF/KB)possesses high metal loading over 4 wt%and shows superior ORR performance with a half-wave potential(E1/2)of 0.830 V and a limiting current density of 6.14 mA cm-2 as well as high tolerance of methanol in an alkaline medium,which outperforms commercial Pt/C and most non-precious-metal catalysts reported to date.Benefiting from strong stabilization of Co atoms on CTF,Co-CTF/KB shows outstanding stability with only 5 mV negative shifts after 10,000 cycles.Moreover,it also displays high catalytic activity for oxygen evolution reaction(OER),suggesting it is an efficient ORR/OER bifunctional catalyst.The present work provides a facile strategy for preparing single-atom catalysts in bulk quantity and contributes to development of catalysts for electrochemical conversion and storage devices.