Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells test...Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.展开更多
Biopharmaceuticals,such as proteins,peptides,nucleic acids and vaccines,bring about great hopes for the prevention and treatment of various diseases,but the industrialization of these products still faces challenges s...Biopharmaceuticals,such as proteins,peptides,nucleic acids and vaccines,bring about great hopes for the prevention and treatment of various diseases,but the industrialization of these products still faces challenges such as structural instability,inefficient bioactivity and low bioavailability.Ionic liquids(ILs),the marvelous solvent media with inimitable and tunable properties,may provide alternative solutions to overcome the above problems of biopharmaceutical industry.Progress has gradually been made through studies by combination of ILs with biomacromolecules.The applications involved the stabilization,protection,and delivery of biopharmaceuticals.Recent trends are being forwarded to using ILs in vaccines and nucleic acid drugs.However,challenges remain on the toxicity and safety issues.Besides,the cost of adding ILs to the benefits of biopharmaceuticals need to be considered.展开更多
Antimicrobial resistance(AMR)has emerged as a significant challenge in human health.Wastewater treatment plants(WWTPs),acting as a link between human activities and the environment,create ideal conditions for the sele...Antimicrobial resistance(AMR)has emerged as a significant challenge in human health.Wastewater treatment plants(WWTPs),acting as a link between human activities and the environment,create ideal conditions for the selection and spread of antibiotic resistance genes(ARGs)and antibioticresistant bacteria(ARB).Unfortunately,current treatment processes are ineffective in removing ARGs,resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents.This,in turn,leads to their dispersion and potential transmission to human through water and the food chain.To safeguard human and environmental health,it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies.In this study,we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent,highlighting the key influencing mechanisms.Furthermore,recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided,with the aim to achieve the“One Health”objective.展开更多
Domestic and industrial wastewater treatment plants(WWTPs)are facing formidable challenges in effectively eliminating emerging pollutants and conventional nutrients.In microbiome engineering,two approaches have been d...Domestic and industrial wastewater treatment plants(WWTPs)are facing formidable challenges in effectively eliminating emerging pollutants and conventional nutrients.In microbiome engineering,two approaches have been developed:a top-down method focusing on domesticating seed microbiomes into engineered ones,and a bottom-up strategy that synthesizes engineered microbiomes from microbial isolates.However,these approaches face substantial hurdles that limit their real-world applicability in wastewater treatment engineering.Addressing this gap,we propose the creation of a Global WWTP Microbiome-based Integrative Information Platform,inspired by the untapped microbiome and engineering data fromWWTPs and advancements in artificial intelligence(AI).This open platform integrates microbiome and engineering information globally and utilizes AI-driven tools for identifying seed microbiomes for new plants,providing technical upgrades for existing facilities,and deploying microbiomes for accidental pollution remediation.Beyond its practical applications,this platform has significant scientific and social value,supporting multidisciplinary research,documenting microbial evolution,advancing Wastewater-Based Epidemiology,and enhancing global resource sharing.Overall,the platform is expected to enhance WWTPs’performance in pollution control,safeguarding a harmonious and healthy future for human society and the natural environment.展开更多
Polyelectrolyte-doped microcapsules(PDM)was fabricated by coaxial electrospray of a mixture of glycerol and water containing 10 mg/mL cationic polyelectrolyte poly(allylamine hydrochloride)(PAH)fed as the core phase s...Polyelectrolyte-doped microcapsules(PDM)was fabricated by coaxial electrospray of a mixture of glycerol and water containing 10 mg/mL cationic polyelectrolyte poly(allylamine hydrochloride)(PAH)fed as the core phase solution,and a N,N-dimethylacetylamide solution of 10 wt%polyurethane fed as the shell phase solution.Multienzyme system involving Candida Antarctica lipase B(CALB),glucose oxidase(GOD),and horseradish peroxidase(HRP)for cascade reaction was assembled in the PDM at three different places,namely,surface,shell,and lumen.Placing of enzyme inside aqueous lumen of the PDM was realized by in situ encapsulation through adding the enzyme in the core-phase solution for coaxial electrospray.By ion-pairing of enzyme with cationic surfactant CTAB,an organic soluble enzyme-CTAB complex was prepared,so that in situ embedding of enzyme in the shell of the PDM was realized by adding it into the shell phase solution.Surface attachment of enzymes was achieved by layer-by-layer(LbL)technology,which is based on the ion-exchange interactions between oppositely charged enzymes and PAH that was doped in PDM.The enzyme-decorated microcapsule was then studied as a microbioreactor,in which 1-Oxododecyla-α-glucopyranoside was converted by CALB to glucose,which was oxidised by GOD to gluconolactone in a second step.The hydrogen peroxide produced was then used by HRP to oxidize ABTS to form coloured radical cation ABTS•+for activity analysis.The successful fabrication of the PDM and precise localization of enzymes in the PDM by different strategies were fully characterized.By varying the immobilization strategy,totally six PDM bioreactors with three enzymes precisely positional assembled in different strategies were constructed and their activities for the cascade reaction were investigated and compared.The PDM micro-bioreactor prepared by novel electrospray technologies provide a smart platform for positional assembly of multi-enzyme cascade reaction in a precise and well-controlled manner.展开更多
Ferritin nanoparticles with self-assembling properties have been widely explored as vaccine carrier by displaying foreign antigens through genetic fusion strategy.In the present work,an apoferritin(AFt)nanoparticle wa...Ferritin nanoparticles with self-assembling properties have been widely explored as vaccine carrier by displaying foreign antigens through genetic fusion strategy.In the present work,an apoferritin(AFt)nanoparticle was tested as influenza vaccine carrier by chemically conjugating a matrix protein 2 ectodomain(M2e)antigen peptide or/and the full-length hemagglutinin(HA)antigen on the outer surface of the AFt,with heterobifunctional sSMCC or SM(PEG)_(24) containing PEG chain as linkers.To each AFt nanoparticle,about 30-32 M2e or 1.8 HA antigen could be coupled.The AFt-(PEG)24-M2e,in which the M2e was coupled through SM(PEG)_(24) containing PEG chain,conferred higher protective efficacy in immunized mice than AFt-M2e did,but was less effective than AFt-(PEG)_(24)-HA.When both M2e and HA were coupled,the synthesized dual-antigen vaccine candidate AFt-(PEG)_(24)-M2e/HA elicited high level of M2e and HA antigen-specific antibodies and conferred 100%protection against lethal infection of homologous PR8 HI N1 virus strain and 70%protection against a heterologous A/FM/1/47(FM1,H1N1)strain,which was more effective than the M2e or HA single antigen vaccine candidates.The potential cross-protective effect of the dual-antigen vaccine was further demonstrated by significant specific hemagglutination inhibition(HAI)titers in serum of the immunized mice against three other heterologous viral strains including A/Singapore/GPl908/2015(IVR-180)H1N1,A/Anhui/1/2005 H5N1,and A/Hong Kong H3N2.展开更多
The coastal area of the East China Sea has experienced rapid urbanization and industrialization in China since 1980 s, resulting in severe pollution of its environments.Antibiotic resistance genes(ARGs) are regarded a...The coastal area of the East China Sea has experienced rapid urbanization and industrialization in China since 1980 s, resulting in severe pollution of its environments.Antibiotic resistance genes(ARGs) are regarded as a kind of emerging pollutant with potential high risk. The sediment samples were collected from Hangzhou Bay(HB),Xiangshan Bay(XB), and Taizhou Bay(TB) to investigate the spatial occurrence and distribution of 27 ARGs and class I integron–integrase gene(intI1) in the coastal area of the East China Sea. The PCR results showed the frequent presence of 11 ARGs and intI1 in the sediments of the three bays. The qPCR results further showed that sulfonamide resistance was the most prevalent ARG type and antibiotic target replacement and protection were the most important resistance mechanisms in the sediments. Regarding the subtype of ARGs, sulI, tetW, and dfrA13 were the most abundant ARGs, in which sulI was higher in TB(based on both the absolute and relative abundances) and dfrA13 was higher in HB(based on the relative abundances). The network analysis revealed that intI1 had significant correlations with tetC, sulI, sulII, and blaPSE-1. Oil was the key connected factor, which had positive connections with sulI, sulII, and blaPSE-1. In addition, the joint effect of heavy metals and nutrients & organic pollutants might be crucial for the fate of ARGs in the coastal sediments.展开更多
分别采用氮气吹干法和旋转蒸发法制备由磷脂和膜支架蛋白组成的电荷型纳米盘,用凝胶过滤色谱对其尺寸分级,分析了其性能,考察了其与肝微粒体细胞色素P450的结合能力。结果表明,纳米盘外观澄清透明,微观呈圆盘状,平均直径10nm,在p H 7.4...分别采用氮气吹干法和旋转蒸发法制备由磷脂和膜支架蛋白组成的电荷型纳米盘,用凝胶过滤色谱对其尺寸分级,分析了其性能,考察了其与肝微粒体细胞色素P450的结合能力。结果表明,纳米盘外观澄清透明,微观呈圆盘状,平均直径10nm,在p H 7.4下Zeta电位为-19.86 m V;肝微粒体破碎液与纳米盘能很好结合,CO差示光谱在450 nm出现明显吸收峰,细胞色素P450含量为0.10 nmol/mg,比活比未经纳米盘处理时提高13.0倍,较传统方法提升1.5倍,且操作时间由数日缩短至数小时。电荷型纳米盘在结合膜蛋白细胞色素P450的同时,活性保持良好,在膜蛋白研究领域极具应用潜力。展开更多
More and more biomolecules are being produced by the biotechnology industry for applications ranging from medicine and food to engineering materials. Liquid chromatography plays a center-stage role in a typical downst...More and more biomolecules are being produced by the biotechnology industry for applications ranging from medicine and food to engineering materials. Liquid chromatography plays a center-stage role in a typical downstream process producing biomolecules such as recombinant proteins. Rigid gigaporous media are porous particles possessing large transecting through-pores with a pore-to-particle diameter ratio of dpore/dparticle〉 0.01. They allow convective flow in the large through-pores, while the smaller diffusion-pores (typically several hundred angstroms in size) supply the needed surface areas. Because of the transecting gigapores, a portion of the mobile phase flows through the pores in addition to fluid flow in the interstitial spaces between the particles in a packed-bed column. This considerably lowers the operating column pressure drop. This lower pressure drop makes axial-direction scale-up of chromatographic columns possible to avoid pancake columns that invariably degrade separation resolution. The large gigapores also make the binding sites on the diffusion pore surfaces more accessible, thus increasing the loading capacity of large protein molecules that can be hindered sterically if only diffusion pores are present. This work discusses the development of rigid gigaporous media and their potential impact on the design of multi-stage downstream process from the angle of multi-scale analysis.展开更多
Protein expression in E coil often results in the formation of a kind of protein aggregate called inclusion body Conversion of the inactive protein aggregate into biologically active protein is a key step in productio...Protein expression in E coil often results in the formation of a kind of protein aggregate called inclusion body Conversion of the inactive protein aggregate into biologically active protein is a key step in production of recombinant products Convenlional dilution refolding technique suffers from disadvantages of low recovery and low concentration Various chromatographic refolding techniques have been developed over the last few years These include size-exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography and different affinity chromatography. A successful strategy is the use of gradient elution in column control which provides a gentle and gradual change of the solution environment for the macromolecule to rsfold at nano-scale, The gradient refolding at column scale could minimize misfolding and aggregation which are induced by sudden change of the solution in conventional refolding operation.展开更多
Microbial community structure is afiected by both natural processes and human activities.In coastal area,anthropegenetic activity can usually lead to the discharge of the effluent from wastewater treatment plant(WWTP)...Microbial community structure is afiected by both natural processes and human activities.In coastal area,anthropegenetic activity can usually lead to the discharge of the effluent from wastewater treatment plant(WWTP)to sea,and thus the water quality chronically turns worse and marine ecosystem becomes unhealthy.Microorganisms play key roles in pollutants degradation and ecological restoration;however,there are few studies about how the WWTP effluent disposal influences coastal microbial communities.In this study,sediment samples were collected from two WWTP effluentreceiving areas(abbreviated as JX and SY)in Hangzhou Bay.First,based on the high-throughput sequencing of 16S rRNA gene,microbial community structure was analyzed.Secondly,several statistical analyses were conducted to reveal the microbial community characteristics in response to the effluent disposal.Using PCoA,the significant difference of in microbial community structure was determined between JX and SY;using RDA,water COD and temperature,and sediment available phosphate and ammonia nitrogen were identified as the key environmental factors for the community difference;using LDA effect size analysis,the most distinctive microbes were found and their correlations with environmental factors were investigated;and according to detrended beta-nearesttaxon-index,the sediment microbial communities were found to follow"niche theory".An interesting and important finding was that in SY that received more and toxic COD,many distinctive microbes were related to the groups that were capable of degrading toxic organic pollutants.This study provides a clear illustration of eco-environmental deterioration under the long-term human pressure from the view of microbial ecology.展开更多
基金the National Basic Research Program of China(973 Program),No. 2005CB522604
文摘Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.
基金The authors are thankful for the financial support from the National Natural Science Foundation of China(Nos.21808226,31970872,and 21821005).
文摘Biopharmaceuticals,such as proteins,peptides,nucleic acids and vaccines,bring about great hopes for the prevention and treatment of various diseases,but the industrialization of these products still faces challenges such as structural instability,inefficient bioactivity and low bioavailability.Ionic liquids(ILs),the marvelous solvent media with inimitable and tunable properties,may provide alternative solutions to overcome the above problems of biopharmaceutical industry.Progress has gradually been made through studies by combination of ILs with biomacromolecules.The applications involved the stabilization,protection,and delivery of biopharmaceuticals.Recent trends are being forwarded to using ILs in vaccines and nucleic acid drugs.However,challenges remain on the toxicity and safety issues.Besides,the cost of adding ILs to the benefits of biopharmaceuticals need to be considered.
基金supported by the National Natural Science Foundation of China(Grant Nos.51938001,52170185 and 52070111)the China Postdoctoral Science Foundation(No.2022M721815)。
文摘Antimicrobial resistance(AMR)has emerged as a significant challenge in human health.Wastewater treatment plants(WWTPs),acting as a link between human activities and the environment,create ideal conditions for the selection and spread of antibiotic resistance genes(ARGs)and antibioticresistant bacteria(ARB).Unfortunately,current treatment processes are ineffective in removing ARGs,resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents.This,in turn,leads to their dispersion and potential transmission to human through water and the food chain.To safeguard human and environmental health,it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies.In this study,we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent,highlighting the key influencing mechanisms.Furthermore,recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided,with the aim to achieve the“One Health”objective.
基金financially supported by the National Natural Science Foundation of China(grant number 51938001,52170185,42007291,and 52070111)the China Postdoctoral Science Foundation(grant number 2022M721815).
文摘Domestic and industrial wastewater treatment plants(WWTPs)are facing formidable challenges in effectively eliminating emerging pollutants and conventional nutrients.In microbiome engineering,two approaches have been developed:a top-down method focusing on domesticating seed microbiomes into engineered ones,and a bottom-up strategy that synthesizes engineered microbiomes from microbial isolates.However,these approaches face substantial hurdles that limit their real-world applicability in wastewater treatment engineering.Addressing this gap,we propose the creation of a Global WWTP Microbiome-based Integrative Information Platform,inspired by the untapped microbiome and engineering data fromWWTPs and advancements in artificial intelligence(AI).This open platform integrates microbiome and engineering information globally and utilizes AI-driven tools for identifying seed microbiomes for new plants,providing technical upgrades for existing facilities,and deploying microbiomes for accidental pollution remediation.Beyond its practical applications,this platform has significant scientific and social value,supporting multidisciplinary research,documenting microbial evolution,advancing Wastewater-Based Epidemiology,and enhancing global resource sharing.Overall,the platform is expected to enhance WWTPs’performance in pollution control,safeguarding a harmonious and healthy future for human society and the natural environment.
基金The authors thank the support from the National Natural Science Foundation of China(Grant No.21676276).
文摘Polyelectrolyte-doped microcapsules(PDM)was fabricated by coaxial electrospray of a mixture of glycerol and water containing 10 mg/mL cationic polyelectrolyte poly(allylamine hydrochloride)(PAH)fed as the core phase solution,and a N,N-dimethylacetylamide solution of 10 wt%polyurethane fed as the shell phase solution.Multienzyme system involving Candida Antarctica lipase B(CALB),glucose oxidase(GOD),and horseradish peroxidase(HRP)for cascade reaction was assembled in the PDM at three different places,namely,surface,shell,and lumen.Placing of enzyme inside aqueous lumen of the PDM was realized by in situ encapsulation through adding the enzyme in the core-phase solution for coaxial electrospray.By ion-pairing of enzyme with cationic surfactant CTAB,an organic soluble enzyme-CTAB complex was prepared,so that in situ embedding of enzyme in the shell of the PDM was realized by adding it into the shell phase solution.Surface attachment of enzymes was achieved by layer-by-layer(LbL)technology,which is based on the ion-exchange interactions between oppositely charged enzymes and PAH that was doped in PDM.The enzyme-decorated microcapsule was then studied as a microbioreactor,in which 1-Oxododecyla-α-glucopyranoside was converted by CALB to glucose,which was oxidised by GOD to gluconolactone in a second step.The hydrogen peroxide produced was then used by HRP to oxidize ABTS to form coloured radical cation ABTS•+for activity analysis.The successful fabrication of the PDM and precise localization of enzymes in the PDM by different strategies were fully characterized.By varying the immobilization strategy,totally six PDM bioreactors with three enzymes precisely positional assembled in different strategies were constructed and their activities for the cascade reaction were investigated and compared.The PDM micro-bioreactor prepared by novel electrospray technologies provide a smart platform for positional assembly of multi-enzyme cascade reaction in a precise and well-controlled manner.
基金supported by the National Natural Science Foundation of China(Nos.21821005,31970872).
文摘Ferritin nanoparticles with self-assembling properties have been widely explored as vaccine carrier by displaying foreign antigens through genetic fusion strategy.In the present work,an apoferritin(AFt)nanoparticle was tested as influenza vaccine carrier by chemically conjugating a matrix protein 2 ectodomain(M2e)antigen peptide or/and the full-length hemagglutinin(HA)antigen on the outer surface of the AFt,with heterobifunctional sSMCC or SM(PEG)_(24) containing PEG chain as linkers.To each AFt nanoparticle,about 30-32 M2e or 1.8 HA antigen could be coupled.The AFt-(PEG)24-M2e,in which the M2e was coupled through SM(PEG)_(24) containing PEG chain,conferred higher protective efficacy in immunized mice than AFt-M2e did,but was less effective than AFt-(PEG)_(24)-HA.When both M2e and HA were coupled,the synthesized dual-antigen vaccine candidate AFt-(PEG)_(24)-M2e/HA elicited high level of M2e and HA antigen-specific antibodies and conferred 100%protection against lethal infection of homologous PR8 HI N1 virus strain and 70%protection against a heterologous A/FM/1/47(FM1,H1N1)strain,which was more effective than the M2e or HA single antigen vaccine candidates.The potential cross-protective effect of the dual-antigen vaccine was further demonstrated by significant specific hemagglutination inhibition(HAI)titers in serum of the immunized mice against three other heterologous viral strains including A/Singapore/GPl908/2015(IVR-180)H1N1,A/Anhui/1/2005 H5N1,and A/Hong Kong H3N2.
基金supported by the National Natural Science Foundation of China(No.51678003)
文摘The coastal area of the East China Sea has experienced rapid urbanization and industrialization in China since 1980 s, resulting in severe pollution of its environments.Antibiotic resistance genes(ARGs) are regarded as a kind of emerging pollutant with potential high risk. The sediment samples were collected from Hangzhou Bay(HB),Xiangshan Bay(XB), and Taizhou Bay(TB) to investigate the spatial occurrence and distribution of 27 ARGs and class I integron–integrase gene(intI1) in the coastal area of the East China Sea. The PCR results showed the frequent presence of 11 ARGs and intI1 in the sediments of the three bays. The qPCR results further showed that sulfonamide resistance was the most prevalent ARG type and antibiotic target replacement and protection were the most important resistance mechanisms in the sediments. Regarding the subtype of ARGs, sulI, tetW, and dfrA13 were the most abundant ARGs, in which sulI was higher in TB(based on both the absolute and relative abundances) and dfrA13 was higher in HB(based on the relative abundances). The network analysis revealed that intI1 had significant correlations with tetC, sulI, sulII, and blaPSE-1. Oil was the key connected factor, which had positive connections with sulI, sulII, and blaPSE-1. In addition, the joint effect of heavy metals and nutrients & organic pollutants might be crucial for the fate of ARGs in the coastal sediments.
文摘分别采用氮气吹干法和旋转蒸发法制备由磷脂和膜支架蛋白组成的电荷型纳米盘,用凝胶过滤色谱对其尺寸分级,分析了其性能,考察了其与肝微粒体细胞色素P450的结合能力。结果表明,纳米盘外观澄清透明,微观呈圆盘状,平均直径10nm,在p H 7.4下Zeta电位为-19.86 m V;肝微粒体破碎液与纳米盘能很好结合,CO差示光谱在450 nm出现明显吸收峰,细胞色素P450含量为0.10 nmol/mg,比活比未经纳米盘处理时提高13.0倍,较传统方法提升1.5倍,且操作时间由数日缩短至数小时。电荷型纳米盘在结合膜蛋白细胞色素P450的同时,活性保持良好,在膜蛋白研究领域极具应用潜力。
文摘More and more biomolecules are being produced by the biotechnology industry for applications ranging from medicine and food to engineering materials. Liquid chromatography plays a center-stage role in a typical downstream process producing biomolecules such as recombinant proteins. Rigid gigaporous media are porous particles possessing large transecting through-pores with a pore-to-particle diameter ratio of dpore/dparticle〉 0.01. They allow convective flow in the large through-pores, while the smaller diffusion-pores (typically several hundred angstroms in size) supply the needed surface areas. Because of the transecting gigapores, a portion of the mobile phase flows through the pores in addition to fluid flow in the interstitial spaces between the particles in a packed-bed column. This considerably lowers the operating column pressure drop. This lower pressure drop makes axial-direction scale-up of chromatographic columns possible to avoid pancake columns that invariably degrade separation resolution. The large gigapores also make the binding sites on the diffusion pore surfaces more accessible, thus increasing the loading capacity of large protein molecules that can be hindered sterically if only diffusion pores are present. This work discusses the development of rigid gigaporous media and their potential impact on the design of multi-stage downstream process from the angle of multi-scale analysis.
基金The Natural Science Foundation of China(NSFC No.20136020,20125616)Chinese Academy of Sciences are gratefully acknowledged for financial supports to this research.
文摘Protein expression in E coil often results in the formation of a kind of protein aggregate called inclusion body Conversion of the inactive protein aggregate into biologically active protein is a key step in production of recombinant products Convenlional dilution refolding technique suffers from disadvantages of low recovery and low concentration Various chromatographic refolding techniques have been developed over the last few years These include size-exclusion chromatography, ion exchange chromatography, hydrophobic interaction chromatography and different affinity chromatography. A successful strategy is the use of gradient elution in column control which provides a gentle and gradual change of the solution environment for the macromolecule to rsfold at nano-scale, The gradient refolding at column scale could minimize misfolding and aggregation which are induced by sudden change of the solution in conventional refolding operation.
基金This study was supported by projects(Nos.51678003 and 51678334)granted by the National Natural Science Foundation of China.
文摘Microbial community structure is afiected by both natural processes and human activities.In coastal area,anthropegenetic activity can usually lead to the discharge of the effluent from wastewater treatment plant(WWTP)to sea,and thus the water quality chronically turns worse and marine ecosystem becomes unhealthy.Microorganisms play key roles in pollutants degradation and ecological restoration;however,there are few studies about how the WWTP effluent disposal influences coastal microbial communities.In this study,sediment samples were collected from two WWTP effluentreceiving areas(abbreviated as JX and SY)in Hangzhou Bay.First,based on the high-throughput sequencing of 16S rRNA gene,microbial community structure was analyzed.Secondly,several statistical analyses were conducted to reveal the microbial community characteristics in response to the effluent disposal.Using PCoA,the significant difference of in microbial community structure was determined between JX and SY;using RDA,water COD and temperature,and sediment available phosphate and ammonia nitrogen were identified as the key environmental factors for the community difference;using LDA effect size analysis,the most distinctive microbes were found and their correlations with environmental factors were investigated;and according to detrended beta-nearesttaxon-index,the sediment microbial communities were found to follow"niche theory".An interesting and important finding was that in SY that received more and toxic COD,many distinctive microbes were related to the groups that were capable of degrading toxic organic pollutants.This study provides a clear illustration of eco-environmental deterioration under the long-term human pressure from the view of microbial ecology.