期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
1
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu zhikeng zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue Porous carbon nanotubes Self-template method Wastewater treatment Supercapacitor electrode
下载PDF
Efficient electrooxidation of biomass-derived aldehydes over ultrathin Ni V-layered double hydroxides films 被引量:1
2
作者 Biying Liu zhikeng zheng +4 位作者 Yaoyu Liu Man Zhang Yuchen Wang Yangyang Wan Kai Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期412-421,I0012,共11页
Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over... Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals. 展开更多
关键词 NiV-LDHs FILMS Hydroxyl radicals Electrocatalytic oxidation Biomass-derived aldehydes
下载PDF
Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ) 被引量:12
3
作者 Anqi Wang zhikeng zheng +4 位作者 Ruiqi Li Di Hu Yiran Lu Huixia Luo Kai Yan 《Green Energy & Environment》 SCIE CSCD 2019年第4期414-423,共10页
The utilization of abundant and renewable biomass to fabricate advanced functional materials is considered a promising route for environmental applications.Herein,Lignin-based porous carbon with layered graphene-like ... The utilization of abundant and renewable biomass to fabricate advanced functional materials is considered a promising route for environmental applications.Herein,Lignin-based porous carbon with layered graphene-like structure(LPC)is successfully synthesized and applied to efficiently remove Pb(Ⅱ)and Cd(Ⅱ).The as-synthesized LPC materials are systematically characterized and these results show that LPC has a porous graphene-like structure,facilitating the diffusion and immobilization of heavy metal ions.The influence of different reaction parameters(solution pH,initial concentration of metal ions,contact time and adsorbent amount)on the adsorption performance is investigated in details.The results demonstrate that LPC can achieve superior adsorption capacities of 250.5 mg·g^-1 for Pb(Ⅱ)and 126.4 mg·g^-1 for Cd(Ⅱ),which are far superior to the previously reported adsorbents.Pseudo-second order kinetics model and Freundlich isotherm model describe the adsorption process well.Furthermore,the exhausted LPC can be regenerated easily and exhibits the removal efficiency of 96%and 92%for Pb(Ⅱ)and Cd(Ⅱ)after five continuous runs,respectively.This study shows a sustainable strategy for the design of porous carbon material from na?ve biomass and highlights the great potential in wastewater treatment. 展开更多
关键词 POROUS carbon LAYERED structure HEAVY METALS Adsorption kinetics RECYCLABILITY
下载PDF
水滑石纳米片用于生物质衍生物电催化氧化的研究进展 被引量:1
4
作者 张曼 郑智铿 +3 位作者 王宇辰 刘彬 仇荣亮 严凯 《科学通报》 EI CAS CSCD 北大核心 2024年第16期2203-2220,共18页
电催化氧化(简称电氧化)生物质衍生物是一种环保高效的技术.与传统热催化相比,主要优势如下:(1)在电催化过程中,水系电解液可以通过解离/电离的方式产生氧源,因此无需使用高成本氧气;(2)常温常压下反应,避免高温高压对设备的苛刻要求;(3... 电催化氧化(简称电氧化)生物质衍生物是一种环保高效的技术.与传统热催化相比,主要优势如下:(1)在电催化过程中,水系电解液可以通过解离/电离的方式产生氧源,因此无需使用高成本氧气;(2)常温常压下反应,避免高温高压对设备的苛刻要求;(3)控制施加的电位和改变电流可实现反应速率和产物选择性的调控;(4)易于使用多类型电化学方法和原位光谱联用方法监测反应过程.然而,现阶段电氧化反应的转化率和选择性仍有很大的提升空间,需要开发高效、高选择性、高稳定性的电催化剂,深入理解反应机理,为应用奠定技术支撑.本文首先综述了近年来报道的水滑石纳米片制备的常用剥离技术并进行对比,其次详细总结了水滑石纳米片用于呋喃类、苯甲醛、苯甲醇、甘油等生物质衍生物电氧化反应的机制与研究进展,最后展望了相关研究面临的挑战和前景,为水滑石纳米片用于电氧化研究提供理论指导和参考意义,促进生物质衍生物的应用. 展开更多
关键词 电催化 氧化 水滑石纳米片 剥离方法 生物质衍生物
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部