Bi-activated photonic materials are promising for various applications in high-capacity telecommunication,tunable laser,and advanced bioimaging and sensing.Although various Bi-doped material candidates have been explo...Bi-activated photonic materials are promising for various applications in high-capacity telecommunication,tunable laser,and advanced bioimaging and sensing.Although various Bi-doped material candidates have been explored,manufacturing of Bi heavily doped fiber with excellent optical activity remains a long-standing challenge.Herein,a novel viscosity evolutional behavior mediated strategy for manufacturing of Bi-doped active fiber with high dopant solubility is proposed.The intrinsic relation among the evolution of Bi,reaction temperature and viscosity of the glass system is established.Importantly,the effective avenue to prevent the undesired deactivation of Bi during fiber drawing by tuning the temperature dependent viscosity evolution is built.By applying the strategy,for the first time we demonstrate the success in fabrication of heavily doped Bi active fiber.Furthermore,the principal fiber amplifier device is constructed and broadband optical signal amplification is realized.Our findings indicate the effectiveness of the proposed temperature dependent viscosity mediated strategy for developing novel photonic active fiber,and they also demonstrate the great potential for application in the next-generation high-capacity telecommunication system.展开更多
Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher fr...Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format.展开更多
High-speed visible light communication(VLC)using light-emitting diodes(LEDs)is a potential complementary technology for beyond-5 G wireless communication networks.The speed of VLC systems significantly depends on the ...High-speed visible light communication(VLC)using light-emitting diodes(LEDs)is a potential complementary technology for beyond-5 G wireless communication networks.The speed of VLC systems significantly depends on the quality of LEDs,and thus various novel LEDs with enhanced VLC performance increasingly emerge.Among them,In Ga N/Ga N-based LEDs on a Si-substrate are a promising LED transmitter that has enabled VLC data rates beyond 10 Gbps.The optimization on the period number of superlattice interlayer(SL),which is a stressrelief epitaxial layer in a Si-substrate LED,has been demonstrated to be an effective method to improve Si-substrate LED’s luminescence properties.However,this method to improve LED’s VLC properties is barely investigated.Hence,we for the first time experimentally studied the impact of SL period number on VLC performance.Accordingly,we designed and fabricated an integrated 4×4 multichromatic Si-substrate wavelength-divisionmultiplexing LED array chip with optimal SL period number.This chip allows up to 24.25 Gbps/1.2 m VLC transmission using eight wavelengths,which is the highest VLC data rate for an In Ga N/Ga N LED-based VLC system to the best of our knowledge.Additionally,a record-breaking data rate of 2.02 Gbps over a 20-m VLC link is achieved using a blue Si-substrate LED with the optimal SL period number.These results validate the effectiveness of Si-substrate LEDs for both high-speed and long-distance VLC and pave the way for Si-substrate LED design specially for high-speed VLC applications.展开更多
A few-mode fiber (FMF) is designed to support three spatial modes (LP01, LP 11a, and LP 11 b) and fabricated through plasma chemical vapor deposition (PCVD)and rod-in-tube (RIT) method. Using PDM-DFTS-OFDM- 32...A few-mode fiber (FMF) is designed to support three spatial modes (LP01, LP 11a, and LP 11 b) and fabricated through plasma chemical vapor deposition (PCVD)and rod-in-tube (RIT) method. Using PDM-DFTS-OFDM- 32QAM modulation, wavelength division multiplexing, mode multiplexing, and coherent detection, we successfully demonstrated 200Tb/s (375× 3 × 178.125Gb/s) signal over 1 km FMF using C and L bands with 25 GHz channel spacing. After 1 km FMF transmission, all the tested bit error rates (BERs) are below 20% forward error correction (FEC) threshold (2.0 × 10-2). Within each sub-channel, we achieved a spectral efficiency of 21.375 bits/Hz in the C and L bands.展开更多
基金support from the National Key R&D Program of China(2020YFB1805901)the National Science Fund for Distinguished Young Scholars(62125502)+7 种基金the National Natural Science Foundation of China(51972113,52302002 and 62305115)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)Foshan Science and Technology Innovation Project(1920001000052)the Foundation of State Key Laboratory of Reactor System Design Technologythe Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdongthe Research Project supported by State Key Lab of Luminescent Materials and DevicesSouth China University of Technology(Skllmd2023-07)the Sponsored Research Project of Corning Incorporated。
文摘Bi-activated photonic materials are promising for various applications in high-capacity telecommunication,tunable laser,and advanced bioimaging and sensing.Although various Bi-doped material candidates have been explored,manufacturing of Bi heavily doped fiber with excellent optical activity remains a long-standing challenge.Herein,a novel viscosity evolutional behavior mediated strategy for manufacturing of Bi-doped active fiber with high dopant solubility is proposed.The intrinsic relation among the evolution of Bi,reaction temperature and viscosity of the glass system is established.Importantly,the effective avenue to prevent the undesired deactivation of Bi during fiber drawing by tuning the temperature dependent viscosity evolution is built.By applying the strategy,for the first time we demonstrate the success in fabrication of heavily doped Bi active fiber.Furthermore,the principal fiber amplifier device is constructed and broadband optical signal amplification is realized.Our findings indicate the effectiveness of the proposed temperature dependent viscosity mediated strategy for developing novel photonic active fiber,and they also demonstrate the great potential for application in the next-generation high-capacity telecommunication system.
基金This research was funded by the National Key Research and Development Program of China(2022YFB2802803)the Natural Science Foundation of China Project(No.61925104,No.62031011,No.62201157,No.62074072).
文摘Although the 5G wireless network has made significant advances,it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras.As a result,emerging technologies in higher frequencies including visible light communication(VLC),are becoming a hot topic.In particular,LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing(WDM)technology.This paper proposes an optimized multi-color LED array chip for high-speed VLC systems.Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency,especially in the“yellow gap”region,and it achieves significant improvement in data rate compared with earlier research.This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model,which provides an explanation of the simulation and experiment results.In the final test using a laboratory communication system,the data rates of eight channels from short to long wavelength are 3.91 Gb/s,3.77 Gb/s,3.67 Gb/s,4.40 Gb/s,3.78 Gb/s,3.18 Gb/s,4.31 Gb/s,and 4.35 Gb/s(31.38 Gb/s in total),with advanced digital signal processing(DSP)techniques including digital equalization technique and bit-power loading discrete multitone(DMT)modulation format.
基金National Natural Science Foundation of China(61925104,62031011)Fudan University-CIOMP Joint Fund。
文摘High-speed visible light communication(VLC)using light-emitting diodes(LEDs)is a potential complementary technology for beyond-5 G wireless communication networks.The speed of VLC systems significantly depends on the quality of LEDs,and thus various novel LEDs with enhanced VLC performance increasingly emerge.Among them,In Ga N/Ga N-based LEDs on a Si-substrate are a promising LED transmitter that has enabled VLC data rates beyond 10 Gbps.The optimization on the period number of superlattice interlayer(SL),which is a stressrelief epitaxial layer in a Si-substrate LED,has been demonstrated to be an effective method to improve Si-substrate LED’s luminescence properties.However,this method to improve LED’s VLC properties is barely investigated.Hence,we for the first time experimentally studied the impact of SL period number on VLC performance.Accordingly,we designed and fabricated an integrated 4×4 multichromatic Si-substrate wavelength-divisionmultiplexing LED array chip with optimal SL period number.This chip allows up to 24.25 Gbps/1.2 m VLC transmission using eight wavelengths,which is the highest VLC data rate for an In Ga N/Ga N LED-based VLC system to the best of our knowledge.Additionally,a record-breaking data rate of 2.02 Gbps over a 20-m VLC link is achieved using a blue Si-substrate LED with the optimal SL period number.These results validate the effectiveness of Si-substrate LEDs for both high-speed and long-distance VLC and pave the way for Si-substrate LED design specially for high-speed VLC applications.
基金Aeknowledgements This work was supported by the Major Scientific and Technological hmovation Projects of Hubci Province (No. 2014AAA001), the National Basic Research Program of China (Nos. 2014CB340100, 2014CB340101, and 2014CB340105). and the Natural Science Foundation of Hubei Prov incc (No. 2015CFA056).
文摘A few-mode fiber (FMF) is designed to support three spatial modes (LP01, LP 11a, and LP 11 b) and fabricated through plasma chemical vapor deposition (PCVD)and rod-in-tube (RIT) method. Using PDM-DFTS-OFDM- 32QAM modulation, wavelength division multiplexing, mode multiplexing, and coherent detection, we successfully demonstrated 200Tb/s (375× 3 × 178.125Gb/s) signal over 1 km FMF using C and L bands with 25 GHz channel spacing. After 1 km FMF transmission, all the tested bit error rates (BERs) are below 20% forward error correction (FEC) threshold (2.0 × 10-2). Within each sub-channel, we achieved a spectral efficiency of 21.375 bits/Hz in the C and L bands.