Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite cata...Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals.展开更多
The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high reso...The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.展开更多
Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circ...Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.展开更多
In order to mitigate speckle noise in synthetic aperture radar(SAR)images and enhance the accuracy of SAR tomography,non-local means(NL-means)filtering has been proven to be an effective method for improving the quali...In order to mitigate speckle noise in synthetic aperture radar(SAR)images and enhance the accuracy of SAR tomography,non-local means(NL-means)filtering has been proven to be an effective method for improving the quality of SAR interferograms.Apart from considerations like noise type and the definition of similarity,the size and shape of filtering windows are critical factors influencing the efficacy of NL-means filtering,yet there has been limited research on this aspect.This paper introduces an enhanced NL-means filtering method based on adaptive windows,allowing for the automatic adjustment of filtering window size according to the amplitude information of the SAR interferogram.Simultaneously,a directional window is incorporated to align SAR interferograms,achieving the dual objective of preserving filtering standards and retaining detailed information.Experimental results on interferogram filtering and tomography,based on TerraSAR-X data,demonstrate that the proposed method effectively reduces phase noise while maintaining texture accuracy,thereby improving tomography quality.展开更多
Hydrogenation of methyl acetate is a key step in ethanol synthesis from dimethyl ether carbonylation and Cu-based catalysts are widely studied.We report here that the hydrogenation activity of Cu/ZnO catalysts can be ...Hydrogenation of methyl acetate is a key step in ethanol synthesis from dimethyl ether carbonylation and Cu-based catalysts are widely studied.We report here that the hydrogenation activity of Cu/ZnO catalysts can be enhanced by the addition of MgO promoter.The evolution of crystal phases during coprecipitation and the physicochemical properties of calcined and reduced catalysts by X-ray diffraction(XRD),thermogravimetric(TG)-mass spectrometry(MS),Brunauer-Emmett-Teller(BET),transmission electron microscopy(TEM),N_(2)O titration,in situ CO-Fourier transform infrared spectroscopy(FTIR)and H_(2)-temperature programmed reduction(H_(2)-TPR)reveal that the promoter effect likely lies in the presence of Mg^(2+).A proper amount of Mg^(2+)mediates the precipitation process of Cu and Zn,leading to preferable formation of aurichalcite(Cu_(x)Zn_(1-x))5(CO_(3))_(2)(OH)_(6) crystal phase and a small amount of basic carbonates such as hydrozincite Zn_(5)(CO_(3))_(2)(OH)_(6) and malachite Cu_(2) CO_(3)(OH)_(2).The presence of aurichalcite strengthens the interaction between Cu and Zn species,and thus enhances the dispersity of CuO species and helps generation of Cu^(+)species on reduced catalysts.Furthermore,the performance of Cu/ZnO catalysts exhibits an optimal dependence on the Mg loading,i.e.,17.5%.However,too much Mg^(2+)in the precipitation liquid prohibits formation of aurichalcite but enhances formation of basic nitrates,leading to a dramatically reduced hydrogenation activity.These findings may find applications for optimization of other Cu-based catalysts in a wider range of hydrogenation reactions.展开更多
Realizing high CO conversion and high aromatics selectivity simultaneously in syngas-to-aromatics(STA)reaction is still challenging.Herein,we report a 57.5%CO conversion along with 74%aromatics selectivity over a comp...Realizing high CO conversion and high aromatics selectivity simultaneously in syngas-to-aromatics(STA)reaction is still challenging.Herein,we report a 57.5%CO conversion along with 74%aromatics selectivity over a composite catalyst consisting of Fe/ZnCr_(2)O_(4)(Fe modified ZnCr_(2)O_(4)spinel)oxide and H-ZSM-5 zeolite.Impregnation of only 3 wt%of Fe onto ZnCr_(2)O_(4)can remarkably increase CO conversion without sacrificing the aromatics selectivity.Oxygen vacancy concentration is improved after impregnating Fe.The highly dispersed iron carbide species is formed during the reaction over Fe/ZnCr_(2)O_(4)spinel oxide.The synergistic effect of oxygen vacancy and iron carbide results in a rapid formation of abundant oxygenated intermediate species,which can be continuously transformed to aromatics in H-ZSM-5.This study provides a new insight into the design of highly efficient catalyst for syngas conversion.展开更多
The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of ...The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.展开更多
Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carbox...Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carboxylates,were first identified and then confirmed to essentially promote aromatization in the syngas conversion over a ZnCrAlO_(x)&H-ZSM-5 composite catalyst.This study provides evidence that the carboxylates can be formed during the reactions of formate species and olefins.In addition,it is shown that the carboxylates favor the formation of aromatics over H-ZSM-5 even in the presence of H2.A novel mechanism for the formation of aromatics via the generation and transformation of carboxylate intermediates is proposed,and the transformation of carboxylates to aromatics via methyl-2-cyclopenten-1-one(MCPO)intermediates is indeed likely.A better understanding of the formation mechanism of aromatics would help optimize the composite catalyst.展开更多
Ethylene and propylene(C_(2)^(–)3=)are the two most demanded olefin products,which are mainly produced by thermal and catalytic cracking of petroleum-derived hydrocarbons now[1].With the depletion of petroleum resour...Ethylene and propylene(C_(2)^(–)3=)are the two most demanded olefin products,which are mainly produced by thermal and catalytic cracking of petroleum-derived hydrocarbons now[1].With the depletion of petroleum resources,the use of non-petroleum resources such as natural gas,coal,biomass,even CO_(2)etc.展开更多
We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant ...We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant oscillator strength, the room-temperature Rabi splitting energy can be enhanced to be as large as 60 meV. The results of excitonic polariton dispersion can be well described using the coupling wave model. It is demonstrated that mode modification between polariton branches allowing, just by controlling the pumping location, to tune the photonic fraction in the different detuning can be investigated comprehensively. Our results present a direct observation of the exciton-polariton dispersions based on two-dimensional oxide semiconductor quantum wells, thus provide a feasible road for coupling of exciton with photon and pave the way for realizing novel polariton-type optoelectronic devices.展开更多
Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon and disrupted intestinal function.Ramulus mori(Sangzhi)alkaloids(SZ-A),derived from twigs of mulberry...Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon and disrupted intestinal function.Ramulus mori(Sangzhi)alkaloids(SZ-A),derived from twigs of mulberry,were approved by the National Medical Products Administration in 2020 for treating type 2 diabetes mellitus.Accumulated evidence has confirmed that SZ-A also alleviates non-alcoholic fatty liver disease and ameliorates inflammation,indicating its potential to address inflammation in UC.However,the treatment of UC faces challenges due to low drug delivery efficiency and short retention time.To overcome these challenges,an injectable and adherent in-situ thermo-sensitive hydrogel containing SZ-A was developed for rectal drug delivery,utilizing the thermo-sensitive polymers Poloxamer 407and 188.The thermo-sensitive hydrogel system was designed with a moderate gelation temperature of 32±0.5℃,a short gelation time of 64 s,a p H range of 7-10,high moisturizing capability exceeding 90%,and moderate mechanical strength of 4-5 s.In a rat model with UC,the in situ thermo-sensitive hydrogel significantly extended the retention time at the colonic site and enabled sustained release after rectal administration.Symptoms of UC were markedly reduced following rectal administration of SZ-A thermosensitive hydrogel.Furthermore,the release of inflammatory factors,such as interleukin-1β(IL-1β),IL-6,IL-18,tumor necrosis factor-α(TNF-α),and transforming growth factor-β1(TGF-β1),significantly decreased in the SZ-A thermo-sensitive hydrogel group.The integrity of the colonic mucosal barrier was significantly enhanced following the application of SZ-A thermo-sensitive hydrogel.In conclusion,rectal administration of SZ-A in situ thermo-sensitive hydrogel effectively alleviated UC symptoms,inhibited the secretion of inflammatory factors,and promoted the repair of the colonic mucosal barrier.This approach holds promise as a potential treatment for UC.展开更多
Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum...Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum of aging biomarkers has been developed,their potential uses and limitations remain poorly characterized.An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research:How old are we?Why do we get old?And how can we age slower?This review aims to address this need.Here,we summarize our current knowledge of biomarkers developed for cellular,organ,and organismal levels of aging,comprising six pillars:physiological characteristics,medical imaging,histological features,cellular alterations,molecular changes,and secretory factors.To fulfill all these requisites,we propose that aging biomarkers should qualify for being specific,systemic,and clinically relevant.展开更多
Remarkable progress in ageing research has been achieved over the past decades.General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ...Remarkable progress in ageing research has been achieved over the past decades.General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing.Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli,representing current hotspots as they not only(re-)shape the individual cell identity,but also involve in cell fate decision.This review focuses on the present findings and emerging concepts in epigenetic,inflammatory,and metabolic regulations and the consequences of the ageing process.Potential therapeutic interventions targeting cell senescence and regulatory mechanisms,using state-of-the-art techniques are also discussed.展开更多
Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well ...Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well understood.In this paper,the complex flow field in the hub endwall of a cantilevered compressor cascade has been investigated through numerical approach.The predicted results were validated by experimental data.To highlight the dominant flow structures among irregular and chaotic motions of various vortices,a Dynamic Mode Decomposition(DMD)method was utilized.The results show that there exist three dominant periodic flow structures:the oscillation of the leakage vortex,a circumferential migration of a Breakdown Induced Vortex(BIV)and the fluctuation of the passage vortex.These three coherent structures all together form a self-sustained closed loop which accounts for the flow unsteadiness of the studied cascade.During this process,the BIV plays a key role in inducing the flow unsteadiness.Only if the BIV is strong enough to affect the passage vortex,the flow unsteadiness occurs.This study expands current knowledge base of flow unsteadiness in a compressor environment,and shows the efficacy of the DMD method for revealing the origin of flow unsteadiness.展开更多
Based on its ability to obtain two-dimensional(2D)high-resolution images in all-time and all-weather conditions,spaceborne synthetic aperture radar(SAR)has become an important remote sensing technique and the study of...Based on its ability to obtain two-dimensional(2D)high-resolution images in all-time and all-weather conditions,spaceborne synthetic aperture radar(SAR)has become an important remote sensing technique and the study of such systems has entered a period of vigorous development.Advanced imaging modes such as radar interferometry,tomography,and multi-static imaging,have been demonstrated.However,current in-orbit spaceborne SARs,which all operate in low Earth orbits,have relatively long revisit times ranging from several days to dozens of days,restricting their temporal sampling rate.Geosynchronous SAR(GEO SAR)is an active research area because it provides significant new capability,especially its much-improved temporal sampling.This paper reviews the research progress of GEO SAR technologies in detail.Two typical orbit schemes are presented,followed by the corresponding key issues,including system design,echo focusing,main disturbance factors,repeat-track interferometry,etc,inherent to these schemes.Both analysis and solution research of the above key issues are described.GEO SAR concepts involving multiple platforms are described,including the GEO SAR constellation,GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR,and formation flying GEO SAR(FF-GEO SAR).Due to the high potential of FF-GEO SAR for three-dimensional(3D)deformation retrieval and coherence-based SAR tomography(TomoSAR),we have recently carried out some research related to FF-GEO SAR.This research,which is also discussed in this paper,includes developing a formation design method and an improved TomoSAR processing algorithm.It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future.展开更多
Hematopoietic stem cells(HSCs)are responsible for generating all blood cells throughout life.Apart from the role of HSCs in maintaining the homeostasis of blood cell production process,they must respond quickly to hem...Hematopoietic stem cells(HSCs)are responsible for generating all blood cells throughout life.Apart from the role of HSCs in maintaining the homeostasis of blood cell production process,they must respond quickly to hematopoietic challenges,such as infection or blood loss.HSCs can be directly/indirectly activated and engage in blood formation for the acute needs in response to inflammation.Recent findings highlight the emerging role of inflammation signaling on HSC fate decision and shaping the hematopoietic system during aging.Here,we summarize recent studies identifying the changes in inflammation and their role in modulation of HSC function and discuss the interaction between inflammation and HSC biology in the contexts of aging and hematological malignancy.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.21978285,21991093,21991090)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals.
基金supported in part by the National Natural Science Foundation of China(Nos.62101039,62201051)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘The near-Earth asteroid collisions could cause catastrophic disasters to humanity and the Earth,so it is crucial to monitor asteroids.Ground-based synthetic aperture radar(SAR)is an observation technique for high resolution imaging of asteroids.The ground-based SAR requires a long integration time to achieve a large synthetic aperture,and the echo signal will be seriously affected by temporal-spatial variant troposphere.Traditional spatiotemporal freezing tropospheric models are ineffective.To cope with this,this paper models and analyses the impacts of temporal-spatial variant troposphere on ground-based SAR imaging of asteroids.For the background tropo-sphere,a temporal-spatial variant ray tracing method is proposed to trace the 4D(3D spatial+temporal)refractive index network provided by the numerical weather model,and calculate the error of the background troposphere.For the tropospheric turbulence,the Andrew power spectral model is used in conjunction with multiphase screen theory,and varying errors are obtained by tracking the changing position of the pierce point on the phase screen.Through simulation,the impact of temporal-spatial variant tropospheric errors on image quality is analyzed,and the simulation results show that the X-band echo signal is seriously affected by the troposphere and the echo signal must be compensated.
基金supported in part by the National Key Research and Development Program of China(No.SQ2022YFB 3900055)in part by the National Natural Science Foundation of China(No.62101039)+1 种基金in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by China Postdoctoral Science Foundation(No.2022M720443).
文摘Synthetic aperture radar(SAR)three-dimensional(3D)imaging technology can reconstruct the complete structure of observed targets and has been a hot topic.Compared with tomographic SAR,array interferometric SAR,and circular SAR,curve SAR can use less data to achieve 3D positioning of targets.Most existing algorithms for estimating Doppler frequency modulation(FM)rate are based on sub aperture partitioning,resulting in low computational efficiency.To address this,this article establishes a target height estimation model,which reflects the relation-ship between the height and the residual Doppler FM rate for spaceborne curve SAR.Then,a fast SAR 3D localization processing flow based on fractional Fourier transform(FrFT)is proposed.Experimental verification demonstrates that this method can estimate the Doppler FM of the target column by column,and the 3D position error for non-overlapping targets is controlled within 1 m.For overlapping points with an intensity ratio greater than 1.5,the root mean square error(RMSE)of the estimation results is around 5 m.If the separation between overlapping points is greater than 35 m,the RMSE decreases to approximately 2 m.
基金supported in part by the National Natural Science Foundation of China(Nos.62201051,62101039)in part by the Shandong Excellent Young Scientists Fund Program(Overseas)in part by the National Key Research and Development Program of China(No.SQ2022YFB3900055).
文摘In order to mitigate speckle noise in synthetic aperture radar(SAR)images and enhance the accuracy of SAR tomography,non-local means(NL-means)filtering has been proven to be an effective method for improving the quality of SAR interferograms.Apart from considerations like noise type and the definition of similarity,the size and shape of filtering windows are critical factors influencing the efficacy of NL-means filtering,yet there has been limited research on this aspect.This paper introduces an enhanced NL-means filtering method based on adaptive windows,allowing for the automatic adjustment of filtering window size according to the amplitude information of the SAR interferogram.Simultaneously,a directional window is incorporated to align SAR interferograms,achieving the dual objective of preserving filtering standards and retaining detailed information.Experimental results on interferogram filtering and tomography,based on TerraSAR-X data,demonstrate that the proposed method effectively reduces phase noise while maintaining texture accuracy,thereby improving tomography quality.
基金supported from the National Natural Science Foundation of China(Grant Nos.21972141,21991094,21991090)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Hydrogenation of methyl acetate is a key step in ethanol synthesis from dimethyl ether carbonylation and Cu-based catalysts are widely studied.We report here that the hydrogenation activity of Cu/ZnO catalysts can be enhanced by the addition of MgO promoter.The evolution of crystal phases during coprecipitation and the physicochemical properties of calcined and reduced catalysts by X-ray diffraction(XRD),thermogravimetric(TG)-mass spectrometry(MS),Brunauer-Emmett-Teller(BET),transmission electron microscopy(TEM),N_(2)O titration,in situ CO-Fourier transform infrared spectroscopy(FTIR)and H_(2)-temperature programmed reduction(H_(2)-TPR)reveal that the promoter effect likely lies in the presence of Mg^(2+).A proper amount of Mg^(2+)mediates the precipitation process of Cu and Zn,leading to preferable formation of aurichalcite(Cu_(x)Zn_(1-x))5(CO_(3))_(2)(OH)_(6) crystal phase and a small amount of basic carbonates such as hydrozincite Zn_(5)(CO_(3))_(2)(OH)_(6) and malachite Cu_(2) CO_(3)(OH)_(2).The presence of aurichalcite strengthens the interaction between Cu and Zn species,and thus enhances the dispersity of CuO species and helps generation of Cu^(+)species on reduced catalysts.Furthermore,the performance of Cu/ZnO catalysts exhibits an optimal dependence on the Mg loading,i.e.,17.5%.However,too much Mg^(2+)in the precipitation liquid prohibits formation of aurichalcite but enhances formation of basic nitrates,leading to a dramatically reduced hydrogenation activity.These findings may find applications for optimization of other Cu-based catalysts in a wider range of hydrogenation reactions.
基金the financial support from the National Natural Science Foundation of China(Grant No.21978285,21991093,21991090),the‘‘Transformational Technologies for Clean Energy and Demonstration”the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Realizing high CO conversion and high aromatics selectivity simultaneously in syngas-to-aromatics(STA)reaction is still challenging.Herein,we report a 57.5%CO conversion along with 74%aromatics selectivity over a composite catalyst consisting of Fe/ZnCr_(2)O_(4)(Fe modified ZnCr_(2)O_(4)spinel)oxide and H-ZSM-5 zeolite.Impregnation of only 3 wt%of Fe onto ZnCr_(2)O_(4)can remarkably increase CO conversion without sacrificing the aromatics selectivity.Oxygen vacancy concentration is improved after impregnating Fe.The highly dispersed iron carbide species is formed during the reaction over Fe/ZnCr_(2)O_(4)spinel oxide.The synergistic effect of oxygen vacancy and iron carbide results in a rapid formation of abundant oxygenated intermediate species,which can be continuously transformed to aromatics in H-ZSM-5.This study provides a new insight into the design of highly efficient catalyst for syngas conversion.
文摘The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.
文摘Syngas to aromatics(STA)over bifunctional catalysts has attracted much attention in recent years,but the mechanism underlying the formation of aromatics remains controversial.The critical reaction intermediates,carboxylates,were first identified and then confirmed to essentially promote aromatization in the syngas conversion over a ZnCrAlO_(x)&H-ZSM-5 composite catalyst.This study provides evidence that the carboxylates can be formed during the reactions of formate species and olefins.In addition,it is shown that the carboxylates favor the formation of aromatics over H-ZSM-5 even in the presence of H2.A novel mechanism for the formation of aromatics via the generation and transformation of carboxylate intermediates is proposed,and the transformation of carboxylates to aromatics via methyl-2-cyclopenten-1-one(MCPO)intermediates is indeed likely.A better understanding of the formation mechanism of aromatics would help optimize the composite catalyst.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.21978285,21991093,21991090)the"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Ethylene and propylene(C_(2)^(–)3=)are the two most demanded olefin products,which are mainly produced by thermal and catalytic cracking of petroleum-derived hydrocarbons now[1].With the depletion of petroleum resources,the use of non-petroleum resources such as natural gas,coal,biomass,even CO_(2)etc.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974433,91833301,and 11974122)the Guangdong Natural Science Fund for Distinguished Young Scholars,China(Grant No.2016A030306044)the Science and Technology Program of Guangzhou,China(Grant No.201707020014).
文摘We report observation of dispersion for coupled exciton-polariton in a plate microcavity combining with ZnO/MgZnO multi-quantum well (QW) at room temperature. Benefited from the large exciton binding energy and giant oscillator strength, the room-temperature Rabi splitting energy can be enhanced to be as large as 60 meV. The results of excitonic polariton dispersion can be well described using the coupling wave model. It is demonstrated that mode modification between polariton branches allowing, just by controlling the pumping location, to tune the photonic fraction in the different detuning can be investigated comprehensively. Our results present a direct observation of the exciton-polariton dispersions based on two-dimensional oxide semiconductor quantum wells, thus provide a feasible road for coupling of exciton with photon and pave the way for realizing novel polariton-type optoelectronic devices.
基金financially supported by the National Natural Science Foundation(No.82304393,China)Beijing Nova Program(Nos.Z211100002121127 and 20220484219,China)+1 种基金Beijing Natural Science Foundation(No.L212059,China)CAMS Innovation Fund for Medical Sciences(No.2021-I2M-1-028,China)。
文摘Ulcerative colitis(UC)is a chronic inflammatory bowel disease characterized by persistent inflammation of the colon and disrupted intestinal function.Ramulus mori(Sangzhi)alkaloids(SZ-A),derived from twigs of mulberry,were approved by the National Medical Products Administration in 2020 for treating type 2 diabetes mellitus.Accumulated evidence has confirmed that SZ-A also alleviates non-alcoholic fatty liver disease and ameliorates inflammation,indicating its potential to address inflammation in UC.However,the treatment of UC faces challenges due to low drug delivery efficiency and short retention time.To overcome these challenges,an injectable and adherent in-situ thermo-sensitive hydrogel containing SZ-A was developed for rectal drug delivery,utilizing the thermo-sensitive polymers Poloxamer 407and 188.The thermo-sensitive hydrogel system was designed with a moderate gelation temperature of 32±0.5℃,a short gelation time of 64 s,a p H range of 7-10,high moisturizing capability exceeding 90%,and moderate mechanical strength of 4-5 s.In a rat model with UC,the in situ thermo-sensitive hydrogel significantly extended the retention time at the colonic site and enabled sustained release after rectal administration.Symptoms of UC were markedly reduced following rectal administration of SZ-A thermosensitive hydrogel.Furthermore,the release of inflammatory factors,such as interleukin-1β(IL-1β),IL-6,IL-18,tumor necrosis factor-α(TNF-α),and transforming growth factor-β1(TGF-β1),significantly decreased in the SZ-A thermo-sensitive hydrogel group.The integrity of the colonic mucosal barrier was significantly enhanced following the application of SZ-A thermo-sensitive hydrogel.In conclusion,rectal administration of SZ-A in situ thermo-sensitive hydrogel effectively alleviated UC symptoms,inhibited the secretion of inflammatory factors,and promoted the repair of the colonic mucosal barrier.This approach holds promise as a potential treatment for UC.
基金supported by the National Natural Science Foundation of China(31730036,31871380,31871382,31930055,31930058,32000500,32022034,32030033,32070730,32130046,3217050247,32150005,32200595,32222024,81730019,81730022,81830014,81921006,81925005,81970426,81971301,81971312,82030041,82061160495,82070805,82071595,82090020,82100841,82120108009,82122024,82125002,82125011,82125012,82130045,82171284,82173061,82173398,82225007,82225015,82225017,82225018,82230047,82230088,82271600,91949106,91949201,92049116,92049302,92049304,92149303,92149306,92157202,92168201,92169102,92249301,92268201)the National Key Research and Development Program of China(2018YFA0800700,2018YFC2000100,2018YFC2000102,2018YFC2002003,2019YFA0110900,2019YFA0801703,2019YFA0801903,2019YFA0802202,2019YFA0904800,2020YFA0113400,2020YFA0803401,2020YFA0804000,2020YFC2002900,2020YFC2008000,2020YFE0202200,2021YFA0804900,2021YFA1100103,2021YFA1100900,2021YFE0114200,2021ZD0202400,2022YFA0806001,2022YFA0806002,2022YFA0806600,2022YFA1103200,2022YFA1103601,2022YFA1103701,2022YFA1103800,2022YFA1103801,2022YFA1104100,2022YFA1104904,2022YFA1303000,2022YFC2009900,2022YFC2502401,2022YFC3602400,2022YFE0118000,2022ZD0213200)+14 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16030302,XDB39000000,XDB39030600)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020085,2021080)CAS Project for Young Scientists in Basic Research(YSBR-076)the Program of the Beijing Natural Science Foundation(JQ20031)Clinical Research Operating Fund of Central High level hospitals(2022-PUMCHE-001)CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M1-004)Talent Program of the Chinese Academy of Medical Science(2022RC310-10)Research Funds from Health@Inno HK Program launched by Innovation Technology Commission of the Hong Kong Special Administrative Region,Guangdong Basic and Applied Basic Research Foundation(2020B1515020044)Guangzhou Planned Project of Science and Technology(202002020039)the Major Technology Innovation of Hubei Province(2019ACA141)the Science and Technology Major Project of Hunan Provincial Science and Technology Department(2021SK1010)Shanghai Municipal Science and Technology Major Project(2017SHZDZX01)the Natural Science Foundation of Sichuan Province(2023NSFSC0003)Yunnan Fundamental Research Project(202201AS070080)the State Key Laboratory of Membrane Biology。
文摘Aging biomarkers are a combination of biological parameters to(i)assess age-related changes,(ii)track the physiological aging process,and(iii)predict the transition into a pathological status.Although a broad spectrum of aging biomarkers has been developed,their potential uses and limitations remain poorly characterized.An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research:How old are we?Why do we get old?And how can we age slower?This review aims to address this need.Here,we summarize our current knowledge of biomarkers developed for cellular,organ,and organismal levels of aging,comprising six pillars:physiological characteristics,medical imaging,histological features,cellular alterations,molecular changes,and secretory factors.To fulfill all these requisites,we propose that aging biomarkers should qualify for being specific,systemic,and clinically relevant.
基金This work was supported by Grants 2016YFA0100602,2017YFA0103302,and 2018YFA0109300 from the National Key Research and Development Program of ChinaGrants 81525010,81770155,91749117,91749203,81901403,82030039,82022026,and 82071572 from the National Natural Science Foundation of China+3 种基金Grant 2C32003 from Opening Project of Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang ProvinceGrant 2019B151502008 from the Science Foundation for Distinguished Young Scholars of Guangdong ProvinceGrant 2018GZR110103002 from Innovative Team Program of Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGrant 2017ZT07S347 from the Program for Guangdong Introducing Innovative and Enterpreneurial Teams.
文摘Remarkable progress in ageing research has been achieved over the past decades.General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing.Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli,representing current hotspots as they not only(re-)shape the individual cell identity,but also involve in cell fate decision.This review focuses on the present findings and emerging concepts in epigenetic,inflammatory,and metabolic regulations and the consequences of the ageing process.Potential therapeutic interventions targeting cell senescence and regulatory mechanisms,using state-of-the-art techniques are also discussed.
基金supports of National Natural Science Foundation of China(Nos.51790512,52176045)the National Major Science and technology Project of China(No.J2017-Ⅱ-0010-0024)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX201911)。
文摘Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well understood.In this paper,the complex flow field in the hub endwall of a cantilevered compressor cascade has been investigated through numerical approach.The predicted results were validated by experimental data.To highlight the dominant flow structures among irregular and chaotic motions of various vortices,a Dynamic Mode Decomposition(DMD)method was utilized.The results show that there exist three dominant periodic flow structures:the oscillation of the leakage vortex,a circumferential migration of a Breakdown Induced Vortex(BIV)and the fluctuation of the passage vortex.These three coherent structures all together form a self-sustained closed loop which accounts for the flow unsteadiness of the studied cascade.During this process,the BIV plays a key role in inducing the flow unsteadiness.Only if the BIV is strong enough to affect the passage vortex,the flow unsteadiness occurs.This study expands current knowledge base of flow unsteadiness in a compressor environment,and shows the efficacy of the DMD method for revealing the origin of flow unsteadiness.
基金This work was funded in part by the National Natural Science Foundation of China under Grant Nos.61960206009,61971039,and 61971037the Distinguished Young Scholars of Chongqing(Grant No.cstc2020jcyj-jqX0008)+2 种基金the National Ten Thousand Talents Program‘Young Top Talent’(Grant No.W03070007)the Special Fund for Research on National Major Research Instruments(NSFC Grant Nos.61827901,31727901)the Young Elite Scientists Sponsorship Program by CAST(2017QNRC001).
文摘Based on its ability to obtain two-dimensional(2D)high-resolution images in all-time and all-weather conditions,spaceborne synthetic aperture radar(SAR)has become an important remote sensing technique and the study of such systems has entered a period of vigorous development.Advanced imaging modes such as radar interferometry,tomography,and multi-static imaging,have been demonstrated.However,current in-orbit spaceborne SARs,which all operate in low Earth orbits,have relatively long revisit times ranging from several days to dozens of days,restricting their temporal sampling rate.Geosynchronous SAR(GEO SAR)is an active research area because it provides significant new capability,especially its much-improved temporal sampling.This paper reviews the research progress of GEO SAR technologies in detail.Two typical orbit schemes are presented,followed by the corresponding key issues,including system design,echo focusing,main disturbance factors,repeat-track interferometry,etc,inherent to these schemes.Both analysis and solution research of the above key issues are described.GEO SAR concepts involving multiple platforms are described,including the GEO SAR constellation,GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR,and formation flying GEO SAR(FF-GEO SAR).Due to the high potential of FF-GEO SAR for three-dimensional(3D)deformation retrieval and coherence-based SAR tomography(TomoSAR),we have recently carried out some research related to FF-GEO SAR.This research,which is also discussed in this paper,includes developing a formation design method and an improved TomoSAR processing algorithm.It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future.
基金supported by grants 2016YFA0100602,2017YFA0103302 from the National Key Research and Development Programof ChinaGrants 81420108017,81525010,and 91749203 from and the National Natural Science Foundation of China+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2017ZT07S347)Innovative Team Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR110103002).
文摘Hematopoietic stem cells(HSCs)are responsible for generating all blood cells throughout life.Apart from the role of HSCs in maintaining the homeostasis of blood cell production process,they must respond quickly to hematopoietic challenges,such as infection or blood loss.HSCs can be directly/indirectly activated and engage in blood formation for the acute needs in response to inflammation.Recent findings highlight the emerging role of inflammation signaling on HSC fate decision and shaping the hematopoietic system during aging.Here,we summarize recent studies identifying the changes in inflammation and their role in modulation of HSC function and discuss the interaction between inflammation and HSC biology in the contexts of aging and hematological malignancy.