期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Soft Template-Induced Porous Polyvinylidene Fluoride Membrane for Vanadium Flow Batteries
1
作者 Dingqin Shi Chunyang Li +1 位作者 zhizhang yuan Guojun Li 《Transactions of Tianjin University》 EI CAS 2023年第4期284-292,共9页
Vanadium flow batteries(VFBs)are considered ideal for grid-sc ale,long-duration energy storage applications owing to their decoupled output power and storage capacity,high safety,efficiency,and long cycle life.However... Vanadium flow batteries(VFBs)are considered ideal for grid-sc ale,long-duration energy storage applications owing to their decoupled output power and storage capacity,high safety,efficiency,and long cycle life.However,the widespread adoption of VFB s is hindered by the use of expensive Nafion membranes.Herein,we report a soft template-induced method to develop a porous polyvinylidene fluoride(PVDF)membrane for VFB applications.By incorporating water-soluble and flexible polyethylene glycol(PEG 400)as a soft template,we induced the aggregation of hydrophilic sulfonated poly(ether ether ketone),resulting in phase separation from the hydrophobic PVDF polymer during membrane formation.This process led to the creation of a porous PVDF membrane with controllable morphologies determined by the polyethylene glycol content in the cast solution.The optimized porous PVDF membrane enabled a stable VFB performance for 200 cycles at a current density of 80 mA/cm^(2),and the VFB exhibited a Coulombic efficiency of 95.2%and a voltage efficiency of 87.8%.These findings provide valuable insights for the development of highly stable membranes for VFB applications. 展开更多
关键词 Energy storage Vanadium flow battery Porous polyvinylidene fluoride membrane Soft template-induced phase separation
下载PDF
Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery 被引量:2
2
作者 Dongju Chen Guangyu Liu +2 位作者 Jie Liu Changkun Zhang zhizhang yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期247-254,共8页
A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charg... A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery. 展开更多
关键词 Electrochemical energy storage technology Vanadium-methylene blue flow battery Porous PBI membranes Anti-fouling stability
下载PDF
Low-cost all-iron flow battery with high performance towards long-duration energy storage
3
作者 Xiaoqi Liu Tianyu Li +1 位作者 zhizhang yuan Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期445-451,I0011,共8页
Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost... Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage. 展开更多
关键词 Long-duration energy storage All-iron flow battery Iron-based complexes High performance GLUCONATE
下载PDF
A highly stable membrane with hierarchical structure for wide pH range flow batteries
4
作者 Jing Hu Donglei Yu +3 位作者 Tianyu Li Huamin Zhang zhizhang yuan Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期80-86,共7页
A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and... A membrane with high stability and ion conductivity in wide pH range is essential for energy storage devices.Here,we report a novel membrane with hierarchical core-shell structure,which demonstrates high stability and ion conductivity,simultaneously under a wide pH range applications.Spectral characterizations and theoretical calculation indicate that the non-solvent induces the chain segment configuration and eventually leads to polymer-polymer phase separation,thus forming hierarchical porous core-shell structure.Benefiting from this structure,an acidic vanadium flow battery(VFB)with such a membrane shows excellent performance over 400 cycles with an energy efficiency(EE)of above 81%at current density of 120 mA cm^(-2) and an alkaline zinc-iron flow battery(AZIFB)delivers a cycling stability for more than 200 cycles at 160 mA cm^(-2),along with an EE of above 82%.This paper provides a cost-effective and simple way to fabricate membranes with high performance for variety of energyrelated devices. 展开更多
关键词 Energy storage Wide pH range flow batteries Hierarchical porous membrane Core-shell structure High stability
下载PDF
Roadmap for rechargeable batteries:present and beyond
5
作者 Sen Xin Xu Zhang +40 位作者 Lin Wang Haijun Yu Xin Chang Yu-Ming Zhao Qinghai Meng Pan Xu Chen-Zi Zhao Jiahang Chen Huichao Lu Xirui Kong Jiulin Wang Kai Chen Gang Huang Xinbo Zhang Yu Su Yao Xiao Shu-Lei Chou Shilin Zhang Zaiping Guo Aobing Du Guanglei Cui Gaojing Yang Qing Zhao Liubing Dong Dong Zhou Feiyu Kang Hu Hong Chunyi Zhi zhizhang yuan Xianfeng Li Yifei Mo Yizhou Zhu Dongfang Yu Xincheng Lei Jianxiong Zhao Jiayi Wang Dong Su Yu-Guo Guo Qiang Zhang Jun Chen Li-Jun Wan 《Science China Chemistry》 SCIE EI CSCD 2024年第1期13-42,共30页
Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global ... Rechargeable batteries currently hold the largest share of the electrochemical energy storage market,and they play a major role in the sustainable energy transition and industrial decarbonization to respond to global climate change.Due to the increased popularity of consumer electronics and electric vehicles,lithium-ion batteries have quickly become the most successful rechargeable batteries in the past three decades,yet growing demands in diversified application scenarios call for new types of rechargeable batteries.Tremendous efforts are made to developing the next-generation post-Li-ion rechargeable batteries,which include,but are not limited to solid-state batteries,lithium–sulfur batteries,sodium-/potassium-ion batteries,organic batteries,magnesium-/zinc-ion batteries,aqueous batteries and flow batteries.Despite the great achievements,challenges persist in precise understandings about the electrochemical reaction and charge transfer process,and optimal design of key materials and interfaces in a battery.This roadmap tends to provide an overview about the current research progress,key challenges and future prospects of various types of rechargeable batteries.New computational methods for materials development,and characterization techniques will also be discussed as they play an important role in battery research. 展开更多
关键词 energy storage rechargeable batteries battery materials ELECTROCHEMISTRY
原文传递
Perspective of alkaline zinc-based flow batteries
6
作者 zhizhang yuan Xianfeng Li 《Science China Chemistry》 SCIE EI CSCD 2024年第1期260-275,共16页
Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-b... Energy storage technologies have been identified as the key in constructing new electric power systems and achieving carbon neutrality,as they can absorb and smooth the renewables-generated electricity.Alkaline zinc-based flow batteries are well suitable for stationary energy storage applications,since they feature the advantages of high safety,high cell voltage and low cost.Currently,many alkaline zinc-based flow batteries have been proposed and developed,e.g.,the alkaline zinc–iron flow battery and alkaline zinc–nickel flow battery.Their development and application are closely related to advanced materials and battery configurations.In this perspective,we will first provide a brief introduction and discussion of alkaline zinc-based flow batteries.Then we focus on these batteries from the perspective of their current status,challenges and prospects.The bottlenecks for these batteries are briefly analyzed.Combined with the practical requirements and development trends of alkaline zinc-based flow battery technologies,their future development and research direction will be summarized. 展开更多
关键词 energy storage alkaline zinc-based flow batteries advanced materials battery structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部