An observation operator is a bridge linking the system state vector and observations in a data assimilation system. Despite its importance, the degree to which an observation operator influences the performance of dat...An observation operator is a bridge linking the system state vector and observations in a data assimilation system. Despite its importance, the degree to which an observation operator influences the performance of data assimilation methods is still poorly understood. This study aimed to analyze the influences of linear and nonlinear observation operators on the sequential data assimilation through soil temperature simulation using the unscented particle filter(UPF) and the common land model. The linear observation operator between unprocessed simulations and observations was first established. To improve the correlation between simulations and observations, both were processed based on a series of equations. This processing essentially resulted in a nonlinear observation operator. The linear and nonlinear observation operators were then used along with the UPF in three assimilation experiments: an hourly in situ soil surface temperature assimilation, a daily in situ soil surface temperature assimilation, and a moderate resolution imaging spectroradiometer(MODIS) land surface temperature(LST) assimilation. The results show that the filter improved the soil temperature simulation significantly with the linear and nonlinear observation operators. The nonlinear observation operator improved the UPF's performance more significantly for the hourly and daily in situ observation assimilations than the linear observation operator did, while the situation was opposite for the MODIS LST assimilation. Because of the high assimilation frequency and data quality, the simulation accuracy was significantly improved in all soil layers for hourly in situ soil surface temperature assimilation, while the significant improvements of the simulation accuracy were limited to the lower soil layers for the assimilation experiments with low assimilation frequency or low data quality.展开更多
The Green-Ampt(G-A) infiltration model(i.e., the G-A model) is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infil...The Green-Ampt(G-A) infiltration model(i.e., the G-A model) is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions(PTFs) or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the GA parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.展开更多
A conceptual hydrological model that links the Xin'anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating ra...A conceptual hydrological model that links the Xin'anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating rain-on-snow events that commonly occur in the Pacific Northwest of the United States. The resultant model was applied to the Lookout Creek Watershed in the H. J. Andrews Experimental Forest in the western Cascade Mountains of Oregon, and its ability to simulate streamflow was evaluated. The simulation was conducted at 24-hour and one-hour time scales for the period of 1996 to 2005. The results indicated that runoffand peak discharge could be underestimated if snowpack accumulation and snowmelt under rain-on-snow conditions were not taken into account. The average deterministic coefficient of the hourly model in streamflow simulation in the calibration stage was 0.837, which was significantly improved over the value of 0.762 when the Xin'anjiang model was used alone. Good simulation performance of the XINSNOBAL model in the WS 10 catchment, using the calibrated parameter of the Lookout Creek Watershed for proxy-basin testing, demonstrates that transplanting model parameters between similar watersheds can orovide a useful tool for discharge forecastin~, in un^au^ed basins.展开更多
Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter...Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone.展开更多
As a country with one of the world's most rapidly developing economies, China is home to wonderful opportunities for its people and the nation as a whole. An essential element for continued economic prosperity is a w...As a country with one of the world's most rapidly developing economies, China is home to wonderful opportunities for its people and the nation as a whole. An essential element for continued economic prosperity is a water supply of guaranteed quality and quantity, providing critical insurance for food safety, health, and political stability. However, China's economic success has come with serious water resources problems, intensified by human activities and climate change. The nation is now facing extreme levels of water pollution, soil erosion, and sedimentation, along with floods, droughts, and urban storms. Taken together, these impacts have provided a serious headwind to socioeconomic development in China. This article discusses the problems and emerging opportunities for the coming generation of water scientists and engineers.展开更多
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale...High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.展开更多
An analytical solution of drawdown caused by pumping was developed for an aquifer partially penetrated by two streams. The proposed analytical solution modifies Hunt's analytical solution and considers the effects of...An analytical solution of drawdown caused by pumping was developed for an aquifer partially penetrated by two streams. The proposed analytical solution modifies Hunt's analytical solution and considers the effects of stream width and the interaction of two streams on drawdown. Advantages of the solution include its simple structure, consisting of the Theis well function and parameters of aquifer and streambed semipervious material. The calculated results show that the proposed analytical solution agrees with a previously developed acceptable solution and the errors between the two solutions are equal to zero without consideration of the effect of stream width. Also, deviations between the two analytical solutions increase with stream width. Four cases were studied to examine the effect of two streams on drawdown, assuming that some parameters were changeable, and other parameters were constant, such as the stream width, the distance between the stream and the pumping well, the stream recharge rate, and the leakage coefficient of streambed semipervious material.展开更多
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0402706 and 2016YFC0402710)the National Natural Science Foundation of China(Grants No.51709046 and41323001)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(Grant No.2015490311)
文摘An observation operator is a bridge linking the system state vector and observations in a data assimilation system. Despite its importance, the degree to which an observation operator influences the performance of data assimilation methods is still poorly understood. This study aimed to analyze the influences of linear and nonlinear observation operators on the sequential data assimilation through soil temperature simulation using the unscented particle filter(UPF) and the common land model. The linear observation operator between unprocessed simulations and observations was first established. To improve the correlation between simulations and observations, both were processed based on a series of equations. This processing essentially resulted in a nonlinear observation operator. The linear and nonlinear observation operators were then used along with the UPF in three assimilation experiments: an hourly in situ soil surface temperature assimilation, a daily in situ soil surface temperature assimilation, and a moderate resolution imaging spectroradiometer(MODIS) land surface temperature(LST) assimilation. The results show that the filter improved the soil temperature simulation significantly with the linear and nonlinear observation operators. The nonlinear observation operator improved the UPF's performance more significantly for the hourly and daily in situ observation assimilations than the linear observation operator did, while the situation was opposite for the MODIS LST assimilation. Because of the high assimilation frequency and data quality, the simulation accuracy was significantly improved in all soil layers for hourly in situ soil surface temperature assimilation, while the significant improvements of the simulation accuracy were limited to the lower soil layers for the assimilation experiments with low assimilation frequency or low data quality.
基金supported by the National Natural Science Foundation of China(Grants No.51309078 and 51349015)the National Technology Support Program in the 12th Five-Year Plan of China(Grant No.2012BAK10B04)+1 种基金the Fundamental Research Funds for the Central Universities,the Program of Dual Innovative Talents Plan and Innovative Research Team in Jiangsu Provincethe Research on Spatio-Temporal Variable Source Runoff Model Based on Geomorphic Hydrological Response Units and Demonstration Application(Grant No.SHZH-IWHR-73)
文摘The Green-Ampt(G-A) infiltration model(i.e., the G-A model) is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions(PTFs) or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the GA parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.
基金supported by the National Natural Science Foundation of China (Grants No. 40901015 and41001011)the Major Program of the National Natural Science Foundation of China (Grants No. 51190090 and 51190091)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No. B1020062 andB1020072)the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No.20090094120008)the Special Fund of State Key Laboratories of China (Grants No. 2009586412 and 2009585412)the Programme of Introducing Talents of Disciplines to Universities of the Ministry of Education and State Administration of the Foreign Experts Affairs of China (the 111 Project, Grant No.B08048)
文摘A conceptual hydrological model that links the Xin'anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating rain-on-snow events that commonly occur in the Pacific Northwest of the United States. The resultant model was applied to the Lookout Creek Watershed in the H. J. Andrews Experimental Forest in the western Cascade Mountains of Oregon, and its ability to simulate streamflow was evaluated. The simulation was conducted at 24-hour and one-hour time scales for the period of 1996 to 2005. The results indicated that runoffand peak discharge could be underestimated if snowpack accumulation and snowmelt under rain-on-snow conditions were not taken into account. The average deterministic coefficient of the hourly model in streamflow simulation in the calibration stage was 0.837, which was significantly improved over the value of 0.762 when the Xin'anjiang model was used alone. Good simulation performance of the XINSNOBAL model in the WS 10 catchment, using the calibrated parameter of the Lookout Creek Watershed for proxy-basin testing, demonstrates that transplanting model parameters between similar watersheds can orovide a useful tool for discharge forecastin~, in un^au^ed basins.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the Program for Changjiang Scholars and Innovative Research Teams in Universities,the Ministry of Education,China (Grant No. IRT0717)
文摘Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone.
文摘As a country with one of the world's most rapidly developing economies, China is home to wonderful opportunities for its people and the nation as a whole. An essential element for continued economic prosperity is a water supply of guaranteed quality and quantity, providing critical insurance for food safety, health, and political stability. However, China's economic success has come with serious water resources problems, intensified by human activities and climate change. The nation is now facing extreme levels of water pollution, soil erosion, and sedimentation, along with floods, droughts, and urban storms. Taken together, these impacts have provided a serious headwind to socioeconomic development in China. This article discusses the problems and emerging opportunities for the coming generation of water scientists and engineers.
基金supported by the National Basic Research Program of China (the 973 Program,Grant No.2010CB951101)the National Natural Science Foundation of China (Grants No. 50979022 and 50679018)+2 种基金the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT0717)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University (Grant No. 1069-50986312)the Open Fund Approval of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. SKLH-OF-0807)
文摘High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models.
基金supported by the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No.IRT0717)the Scientific Research Foundation for Returned Overseas Chinese Scholars,the State Education Ministry (SRF for ROCS,SEM) (Grant No.2009503512)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No.2009B00514)the Non-profit Industry Financial Program of the Ministry of Water Resources (Grant No.201001020)the Natural Science Foundation of Hohai University (Grant No.2008433111)
文摘An analytical solution of drawdown caused by pumping was developed for an aquifer partially penetrated by two streams. The proposed analytical solution modifies Hunt's analytical solution and considers the effects of stream width and the interaction of two streams on drawdown. Advantages of the solution include its simple structure, consisting of the Theis well function and parameters of aquifer and streambed semipervious material. The calculated results show that the proposed analytical solution agrees with a previously developed acceptable solution and the errors between the two solutions are equal to zero without consideration of the effect of stream width. Also, deviations between the two analytical solutions increase with stream width. Four cases were studied to examine the effect of two streams on drawdown, assuming that some parameters were changeable, and other parameters were constant, such as the stream width, the distance between the stream and the pumping well, the stream recharge rate, and the leakage coefficient of streambed semipervious material.