期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Surface,Size and Thermal Effects in Alkali Metal with Core-Electron Binding-Energy Shifts
1
作者 Wen-huan Zhu zhong-kai huang +3 位作者 Mao-lin Bo Jin huang Cheng Peng Hai Liu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第5期628-638,I0003,I0004,共13页
Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alk... Consistency between density functional theory calculations and X-ray photoelectron spectroscopy measurements confirms our predications on the undercoordination-induced local bond relaxation and core level shift of alkali metal,which determine the surface,size and thermal properties of materials.Zone-resolved photoelectron spectroscopyanalysis method and bond order-length-strength theory can be utilized to quantify the physical parameters regarding bonding identities and electronic property of metal surfaces,which allows for the study of the core-electron binding-energy shifts in alkali metals.By employing these methods and first principle calculation in this work,we can obtain the information of bond and atomic cohesive energy of under-coordinated atoms at the alkali metal surface.In addition,the effect of size and temperature towards the binding-energy in the surface region can be seen from the view point of Hamiltonian perturbation by atomic relaxation with atomic bonding. 展开更多
关键词 Alkali metal First principle calculation Metal surface BINDING-ENERGY Size effect Thermal effect
下载PDF
A practical ANN model for predicting the excavation-induced tunnel horizontal displacement in soft soils 被引量:3
2
作者 zhong-kai huang Dong-Mei Zhang Xiao-Chuang Xie 《Underground Space》 SCIE EI 2022年第2期278-293,共16页
The objective of this study is to propose an artificial neural network(ANN)model to predict the excavation-induced tunnel horizontal displacement in soft soils.For this purpose,a series of finite element data sets fro... The objective of this study is to propose an artificial neural network(ANN)model to predict the excavation-induced tunnel horizontal displacement in soft soils.For this purpose,a series of finite element data sets from rigorously verified numerical models were collected to be utilized for the development of the ANN model.The excavation width,the excavation depth,the retaining wall thickness,the ratio of the average shear strength to the vertical effective stress,the ratio of the average unloading/reloading Young’s modulus to the vertical effective stress,the horizontal distance between the tunnel and retaining wall,and the ratio of the buried depth of the tunnel crown to the excavation depth were chosen as the input variables,while the excavation-induced tunnel horizontal displacement was considered as an output variable.The results demonstrated the feasibility of the developed ANN model to predict the excavation-induced tunnel horizontal displacement.The proposed ANN model in this study can be applied to predict the excavation-induced tunnel horizontal displacement in soft soils for practical risk assessment and mitigation decision. 展开更多
关键词 Artificial neural network EXCAVATION Tunnel horizontal displacement Soft soils
下载PDF
Observed response of maglev structure undercrossed by three shield tunnels in soft soil 被引量:2
3
作者 Dong-Mei Zhang Xiao-Chuang Xie +2 位作者 zhong-kai huang Mao-Zhu Peng Hong-Xin Zhu 《Underground Space》 SCIE EI 2022年第4期636-661,共26页
This paper investigates the response of a maglev structure to three under-crossing tunnels of the Shanghai Metro Line 13.The minimal distance between the tunnels and pile groups of the maglev structure is only 1.5 m,t... This paper investigates the response of a maglev structure to three under-crossing tunnels of the Shanghai Metro Line 13.The minimal distance between the tunnels and pile groups of the maglev structure is only 1.5 m,thus the deformations of the maglev structure are strictly controlled for the serviceability of the operating maglev trains.The displacements of maglev piers and ground settlements during different tunnelling stages are monitored with an automatic measuring system.Based on the observed data,the ground settlement trough and displacements of maglev piers caused by the three shield tunnelling procedures are analyzed and discussed.The maximal ground settlement after the completion of the three tunnelling procedures is -43 mm.To operate the existing maglev safely,practical construction control methods are applied,including synchronous grouting,adjustment of the shield status,shield-advancing speed control,and stabilisation of the soil chamber pressure.With these countermeasures,the tunnel-induced deformations of maglev piers are well below the predefined thresholds.All piers heave under the strict deformation criterion of 2.0 mm.The crossing project is finally completed without interruptions of the maglev operations by monitoring the progress.The presented project is a valuable example for the evaluation of shield tunnelling effects on the adjacent maglev structures and establishes criteria for similar projects in the future. 展开更多
关键词 MAGLEV Multi-crossing Shield tunnelling Ground settlement Pier displacement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部