期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
OsNPF3.1,a nitrate,abscisic acid and gibberellin transporter gene,is essential for rice tillering and nitrogen utilization efficiency
1
作者 Junnan Hang Bowen Wu +3 位作者 Diyang Qiu Guo Yang zhongming fang Mingyong Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1087-1104,共18页
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ... Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively. 展开更多
关键词 rice tillering grain yield PHYTOHORMONE NITRATE transporter nitrogen utilization efficiency
下载PDF
Co-overexpression of genes for nitrogen transport, assimilation, and utilization boosts rice grain yield and nitrogen use efficiency 被引量:1
2
作者 Jie Luo Junnan Hang +3 位作者 Bilong Wu Xilin Wei Quanzhi Zhao zhongming fang 《The Crop Journal》 SCIE CSCD 2023年第3期785-799,共15页
Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key... Nitrogen(N)fertilization is necessary for obtaining high rice yield.But excessive N fertilizer reduces rice plant N efficiency and causes negative effects such as environmental pollution.In this study,we assembled key genes involved in different nodes of N pathways to boost nitrate and ammonium uptake and assimilation,and to strengthen amino acid utilization to increase grain yield and nitrogen use efficiency(NUE)in rice.The combinations OsNPF8.9a×OsNR2,OsAMT1;2×OsGS1;2×OsAS1,and OsGS2×OsAS2×OsANT3 optimized nitrate assimilation,ammonium conversion,and N reutilization,respectively.In co-overexpressing rice lines obtained by co-transformation,the tiller number,biomass,and grain yield per plant of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of wild-type ZH11,the OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line,and the OsGS2×OsAS2×OsANT3-overexpressing line.The glutamine synthase activity,free amino acids,and nitrogen utilization efficiency(NUt E)of the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line exceeded those of ZH11 and other lines that combined key genes.N influx efficiency was increased in the OsAMT1;2×OsGS1;2×OsAS1-overexpressing line and OsNPF8.9a×OsNR2×OsGS1;2×OsAS1-overexpressing line under a low ammonium and a low nitrate treatment,respectively.We propose that combining overexpression of OsAMT1;2,OsGS1;2,and OsAS1 is a promising breeding strategy for systematically increasing rice grain yield and NUE by focusing on key nodes in the N pathway. 展开更多
关键词 Nitrogen Rice tillering Grain yield Nitrogen use efficiency CO-TRANSFORMATION
下载PDF
OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield 被引量:4
3
作者 Jie Wang Renjing Wan +2 位作者 Haipeng Nie Shaowu Xue zhongming fang 《The Crop Journal》 SCIE CSCD 2022年第2期397-406,共10页
Rice has a large number of nitrate or peptide transporter family(NPF) genes, but the effects of most members on rice growth and development are unknown. We report that Os NPF5.16, a nitrate transporter gene with natur... Rice has a large number of nitrate or peptide transporter family(NPF) genes, but the effects of most members on rice growth and development are unknown. We report that Os NPF5.16, a nitrate transporter gene with natural variation in its promoter sequence, is essential for rice growth and yield. The promoter sequence showed various differences between indica and japonica cultivars, and higher expression of Os NPF5.16 was found in indica cultivars with higher plant weight and more tillers than japonica cultivars.Os NPF5.16 was highly expressed in roots, tiller basal parts, and leaf sheaths, and its protein was localized on the plasma membrane. In c RNA-injected Xenopus laevis oocytes, Os NPF5.16 transport of nitrate at high nitrate concentration depended on p H. Overexpression of Os NPF5.16 increased nitrate content and total nitrogen content in leaf sheath as well as biomass and tiller bud length in rice. Elevated expression of Os NPF5.16 increased rice tiller number and grain yield by regulating cytokinin levels. Inhibition of Os NPF5.16 expression showed the opposite effects. Regulating Os NPF5.16 expression has potential for improving rice grain yield. 展开更多
关键词 RICE OsNPF5.16 Nitrate transporter Natural variation GROWTH Grain yield
下载PDF
Mitigating growth-stress tradeoffs via elevated TOR signaling in rice
4
作者 Wei Li Jiaqi Liu +15 位作者 Zeqi Li Ruiqiang Ye Wenzhen Chen Yuqing Huang Yue Yuan Yi Zhang Huayi Hu Peng Zheng zhongming fang Zeng Tao Shiyong Song Ronghui Pan Jian Zhang Jumim Tu Jen Sheen Hao Du 《Molecular Plant》 SCIE CSCD 2024年第2期240-257,共18页
Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,envir... Rice production accounts for approximately half of the freshwater resources utilized in agriculture,result-ing in greenhouse gas emissions such as methane(CH4)from flooded paddy fields.To address this chal-lenge,environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation.However,the implementation of water-saving treatments(WsTs)in paddy-field rice has been associated with a substantial yield loss of up to 50%as well as a reduction in nitrogen use efficiency(NUE).In this study,we discovered that the target of rapamycin(TOR)signaling pathway is compromised in rice under WsT.Polysome profiling-coupled transcriptome sequencing(polysome-seq)analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity.Molecular,biochemical,and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST.Intriguingly,ammonium exhibited a greater ability to alleviate growth constraints under WsT by enhancing TOR signaling,which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation.We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5'untranslated region.Collectively,these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE.Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency. 展开更多
关键词 target of rapamycin TOR water-saving rice low-carbon agriculture DROUGHT nitrogen use efficiency NUE
原文传递
Strigolactones and Brassinosteroids Antagonistically Regulate the Stability of the D53-OsBZR1 Complex to Determine FC1 Expression in Rice Tillering 被引量:21
5
作者 zhongming fang Yuanyuan Ji +3 位作者 Jie Hu Renkang Guo Shiyong Sun Xuelu Wang 《Molecular Plant》 SCIE CAS CSCD 2020年第4期586-597,共12页
Rice tillering,a key architecture trait determ ining grain yield,is highly regulated by a class of newly identified phytohorm ones,strigolactones(SLs).How ever,the whole SL signaling pathw ay from the receptor to dow ... Rice tillering,a key architecture trait determ ining grain yield,is highly regulated by a class of newly identified phytohorm ones,strigolactones(SLs).How ever,the whole SL signaling pathw ay from the receptor to dow nstream transcription factors to finally inhibit tillering remains unrevealed.In this study,we first found that brassinosteroids(BRs)strongly enhance tillering by prom oting bud outgrow th in rice,which is largely different from the function of BRs in Arabidopsis.Genetic and biochem ical analyses indicated that both the SL and BR signaling pathw ays control rice tillering by regulating the stability of D53 and/or the OsBZR1 RLA1-DLT module,a transcriptional complex in the rice BR signaling pathway.We further found that D53 interacts with OsBZR1 to inhibit the expression of FC1,a local inhibitor of tillering,and that this inhibition depends on direct DNA binding by OsBZR1,which recruits D53 to the FC1 promoter in rice buds.Taken together,these findings uncover a mechanism illustrating how SLs and BRs coordinately regulate rice tillering via the early responsive gene FC1. 展开更多
关键词 RICE tillering strigolactones BRASSINOSTEROIDS D53 OsBZFM FCY
原文传递
MiR319-targeted OsTCP21 and OsGAmyb regulate tillering and grain yield in rice 被引量:5
6
作者 Rongna Wang Xiuyan Yang +3 位作者 Shuang Guo Zhaohui Wang Zhanhui Zhang zhongming fang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第7期1260-1272,共13页
Multiple genes and microRNAs(miRNAs)improve grain yield by promoting tillering.MiR319s are known to regulate several aspects of plant development;however,whether miR319s are essential for tillering regulation remains ... Multiple genes and microRNAs(miRNAs)improve grain yield by promoting tillering.MiR319s are known to regulate several aspects of plant development;however,whether miR319s are essential for tillering regulation remains unclear.Here,we report that miR319 is highly expressed in the basal part of rice plant at different development stages.The miR319 knockdown line Short Tandem Target Mimic 319(STTM319)showed higher tiller bud length in seedlings under low nitrogen(N)condition and higher tiller bud number under high N condition compared with the miR319a-overexpression line.Through targets prediction,we identified OsTCP21 and OsGAmyb as downstream targets of miR319.Moreover,OsTCP21 and OsGAmyb overexpression lines and STTM319 had increased tiller bud length and biomass,whereas both were decreased in OsTCP21 and OsGAmyb knockout lines and OE319a.These data suggest that miR319 regulates rice tiller bud development and tillering through targeting OsTCP21 and OsGAmyb.Notably,the tiller number and grain yield increased in STTM319 and overexpression lines of OsTCP21 and OsGAmyb but decreased in OE319a and knockout lines of OsTCP21 and OsGAmyb.Taken together,our findings indicate that miR319s negatively affect tiller number and grain yield by targeting OsTCP21 and OsGAmyb,revealing a novel function for miR319 in rice. 展开更多
关键词 GAMYB grain yield microR319 RICE TCP TILLERING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部