期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pressure-driven anomalous thermal transport behaviors in gallium arsenide
1
作者 zhongyin zhang Xuanhui Fan +3 位作者 Jie Zhu Kunpeng Yuan Jing Zhou Dawei Tang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第11期89-97,共9页
High-pressure has been widely utilized to improve material performances such as thermal conductiv-ityκand interfacial thermal conductance G.Gallium arsenide(GaAs)as a functional semiconductor has attracted extensive ... High-pressure has been widely utilized to improve material performances such as thermal conductiv-ityκand interfacial thermal conductance G.Gallium arsenide(GaAs)as a functional semiconductor has attracted extensive attention in high-pressure studies for its technological importance and complex structure transitions.Thermal properties of GaAs under high pressure are urgent needs in physics but remain elusive.Herein,we systematically investigateκGaAs and G Al/GaAs of multi-structure up to -23 GPa.We conclude that:(1)in pressurization,phonon group velocity,lattice defects,and electrons play a central role inκGaAs in elastic,plastic,and metallization regions,respectively.The increased phonon density of states(PDOS)overlap,group velocity,and interfacial bonding enhances G Al/GaAs.(2)In depressurization,electrons remain the dominant factor on κ GaAs from 23 to 13.5 GPa.G Al/GaAs increases dramatically at -12 GPa due to the larger PDOS overlap.With decompressing to ambient,lattice defects including grain size reduction,arsenic vacancies,and partial amorphization reduce κ GaAs to a glass-like value.Remarkably,the released G Al/GaAs is 2.6 times higher than that of the initial.Thus our findings open a new dimension in synergistically realizing glass-like κ and enhancing G,which can facilitate thermoelectric performance and its potential engineering applications. 展开更多
关键词 Gallium arsenide High pressure Thermal conductivity Interfacial thermal conductance Time domain thermoreflectance
原文传递
Design, Implementation and Control of an Amphibious Spherical Robot
2
作者 Liwei Shi zhongyin zhang +4 位作者 Zhengyu Li Shuxiang Guo Shaowu Pan Pengxiao Bao Lijie Duan 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1736-1757,共22页
We proposed and implemented a leg-vector water-jet actuated spherical robot and an underwater adaptive motion control system so that the proposed robot could perform exploration tasks in complex environments.Our aim w... We proposed and implemented a leg-vector water-jet actuated spherical robot and an underwater adaptive motion control system so that the proposed robot could perform exploration tasks in complex environments.Our aim was to improve the kinematic performance of spherical robots.We developed mechanical and dynamic models so that we could analyze the motions of the robot on land and in water.The robot was equipped with an Inertial Measurement Unit(IMU)that provided inclination and motion information.We designed three types of walking gait for the robot,with different stabilities and speeds.Furthermore,we proposed an online adjustment mechanism to adjust the gaits so that the robot could climb up slopes in a stable manner.As the system function changed continuously as the robot moved underwater,we implemented an online motion recognition system with a forgetting factor least squares algorithm.We proposed a generalized prediction control algorithm to achieve robust underwater motion control.To ensure real-time performance and reduce power consumption,the robot motion control system was implemented on a Zynq-7000 System-on-Chip(SoC).Our experimental results show that the robot’s motion remains stable at different speeds in a variety of amphibious environments,which meets the requirements for applications in a range of terrains. 展开更多
关键词 Bionic amphibious spherical robot Inertial measurement unit Quadruped gaits Forgetting factor least squares algorithm Generalized prediction control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部