In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
Microwave heating,which is used for pre-treatment of concrete before it is comminuted,stands as a strong candidate for selective liberation of multiphase materials like concrete.This paper is concerned with the select...Microwave heating,which is used for pre-treatment of concrete before it is comminuted,stands as a strong candidate for selective liberation of multiphase materials like concrete.This paper is concerned with the selective liberation of concrete's raw constituents(particularly aggregate)for recycling by considering the water content of concrete as a parameter of microwave heating for the first time.The deterioration law of the concrete's performance was characterized by the variation in the splitting tensile strength and relative dynamic modulus after heating by microwave at different water contents.Besides,tests were conducted to evaluate the performance of the interface transition zone(ITZ)between aggregate and mortar as well as to investigate the reasons for the stripping behavior of aggregate-mortar,which included the interface tensile strength test,temperature measurement,and porosity test.The deterioration law of splitting tensile strength and relative dynamic modulus revealed that the performance of concrete was subject to different degrees of damage depending on the water content.Furthermore,experimental results showed that interface bonding strength between aggregate and mortar was dramatically impaired,and a large temperature difference was generated between the aggregate and mortar during microwave heating.Meanwhile,the permeable pores increased considerably even when the specimens were dried.In the presence of water,the intactness of ITZ between aggregate and mortar was destroyed by microwave heating,and its performance was significantly lowered,which led to the occurrence of stripping behavior between aggregate and mortar.This was reaffirmed by the microstructure presented by scanning electron microscopy.Thus,the newly developed microwave pretreatment improved by providing appropriate water contents for concrete corresponding to different strength grades is a promising method for recycling aggregate from waste concrete.展开更多
The road is one of the most important civil infrastructures for serving society,where its service quality and life have direct impacts on the safety and comfort of users.Therefore,road construction,condition detection...The road is one of the most important civil infrastructures for serving society,where its service quality and life have direct impacts on the safety and comfort of users.Therefore,road construction,condition detection and monitoring,and timely maintenance are particularly important for engineers.Many engineering applications of industrial informatics approaches,like image processing technology,widely used computer-based algorithms,and advanced sensors,have been initially and gradually applied to roads.This state-of-the-art review first summarized the research on industrial applications of advanced information technologies in recent years,while analyzing and comparing the advantages and disadvantages of each technology.Especially,five topics were focused on road construction,road maintenance with decision strategy,road structure evaluation,smart sensing in the road,and cooperative vehicle infrastructure system.It is expected that advanced industrial informatics can help engineers promote the development of smart,safe,and sustainable roads.展开更多
Pavement is an important part of transportation infrastructure.In order to maintain pavement before the damage and improve the service quality,it is necessary to develop an intelligent and durable pavement information...Pavement is an important part of transportation infrastructure.In order to maintain pavement before the damage and improve the service quality,it is necessary to develop an intelligent and durable pavement information monitoring system.However,the pavement dynamic response monitoring is highly costly,easily obsolete and statistically redundant.The emergence of the Internet of Things(IoT)technology promises to change that.In this paper,an architecture of a distributed road IoT monitoring system is proposed,which has an acquisition layer,a preprocessing layer,a processing layer,an interaction layer,an energy layer and a network layer.Then,a prototype wireless pavement vibration monitoring system based on the IoT is developed,which consists of a number of wireless sensing nodes,a gateway,a remote server and a browser.Finally,data preprocessing,wireless communication,time synchronization,data processing and visualization,which represent the key to an effective system,are tested and discussed.The prototype wireless pavement vibration monitoring system provides a viable scheme for upgrading the IoT system and its application in the road infrastructures.In the future,any smart road will have an IoT wireless monitoring system to monitor the traffic,environment,and pavement information,which help enable traffic guidance,signal control,danger warning,scientific maintenance decision-making.展开更多
Fracture and fatigue cracking in asphalt binder are two of most serious problems for pavement engineers. In this paper, we present a new comprehensive approach, which consists both of dimensional analysis using Buckin...Fracture and fatigue cracking in asphalt binder are two of most serious problems for pavement engineers. In this paper, we present a new comprehensive approach, which consists both of dimensional analysis using Buckingham H Theorem and J-integral analysis based on classic fracture mechanics, to evaluate the fracture and fatigue on asphalt binder. It is discovered that the dimensional analysis could provide a new perspective to analyze the asphalt fracture and fatigue cracking mechanism.展开更多
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金the financial support from the open project funds for National Major Science and Technology Infrastructure of Materials Service Safety Assessment Facilities,China(MSAF-2020-106)the National Natural Science Foundation of China(No.51808051)。
文摘Microwave heating,which is used for pre-treatment of concrete before it is comminuted,stands as a strong candidate for selective liberation of multiphase materials like concrete.This paper is concerned with the selective liberation of concrete's raw constituents(particularly aggregate)for recycling by considering the water content of concrete as a parameter of microwave heating for the first time.The deterioration law of the concrete's performance was characterized by the variation in the splitting tensile strength and relative dynamic modulus after heating by microwave at different water contents.Besides,tests were conducted to evaluate the performance of the interface transition zone(ITZ)between aggregate and mortar as well as to investigate the reasons for the stripping behavior of aggregate-mortar,which included the interface tensile strength test,temperature measurement,and porosity test.The deterioration law of splitting tensile strength and relative dynamic modulus revealed that the performance of concrete was subject to different degrees of damage depending on the water content.Furthermore,experimental results showed that interface bonding strength between aggregate and mortar was dramatically impaired,and a large temperature difference was generated between the aggregate and mortar during microwave heating.Meanwhile,the permeable pores increased considerably even when the specimens were dried.In the presence of water,the intactness of ITZ between aggregate and mortar was destroyed by microwave heating,and its performance was significantly lowered,which led to the occurrence of stripping behavior between aggregate and mortar.This was reaffirmed by the microstructure presented by scanning electron microscopy.Thus,the newly developed microwave pretreatment improved by providing appropriate water contents for concrete corresponding to different strength grades is a promising method for recycling aggregate from waste concrete.
基金the Hunan Department of Transportation(No.202152)in ChinaNatural Science Foundation of Heilongjiang Province of China(JJ2020ZD0015)+1 种基金the Opening Project Fund of Materials Service Safety Assessment Facilities(MSAF-2021-005,MSAF-2021-109)German Research Foundation(DFG)under Grant No.SFB/TRR 339(453596084)。
文摘The road is one of the most important civil infrastructures for serving society,where its service quality and life have direct impacts on the safety and comfort of users.Therefore,road construction,condition detection and monitoring,and timely maintenance are particularly important for engineers.Many engineering applications of industrial informatics approaches,like image processing technology,widely used computer-based algorithms,and advanced sensors,have been initially and gradually applied to roads.This state-of-the-art review first summarized the research on industrial applications of advanced information technologies in recent years,while analyzing and comparing the advantages and disadvantages of each technology.Especially,five topics were focused on road construction,road maintenance with decision strategy,road structure evaluation,smart sensing in the road,and cooperative vehicle infrastructure system.It is expected that advanced industrial informatics can help engineers promote the development of smart,safe,and sustainable roads.
基金funded by Beijing Major Science and Technology Projects(grant number Z191100008019002)Fundamental Research Funds for the Central University(FRFTP-19-050A1,FRF-BD-19-001A,FRF-MP-19-014)Technology Innovation and Demonstration Project(2021)of the Department of Transport of Yunnan Province。
文摘Pavement is an important part of transportation infrastructure.In order to maintain pavement before the damage and improve the service quality,it is necessary to develop an intelligent and durable pavement information monitoring system.However,the pavement dynamic response monitoring is highly costly,easily obsolete and statistically redundant.The emergence of the Internet of Things(IoT)technology promises to change that.In this paper,an architecture of a distributed road IoT monitoring system is proposed,which has an acquisition layer,a preprocessing layer,a processing layer,an interaction layer,an energy layer and a network layer.Then,a prototype wireless pavement vibration monitoring system based on the IoT is developed,which consists of a number of wireless sensing nodes,a gateway,a remote server and a browser.Finally,data preprocessing,wireless communication,time synchronization,data processing and visualization,which represent the key to an effective system,are tested and discussed.The prototype wireless pavement vibration monitoring system provides a viable scheme for upgrading the IoT system and its application in the road infrastructures.In the future,any smart road will have an IoT wireless monitoring system to monitor the traffic,environment,and pavement information,which help enable traffic guidance,signal control,danger warning,scientific maintenance decision-making.
文摘Fracture and fatigue cracking in asphalt binder are two of most serious problems for pavement engineers. In this paper, we present a new comprehensive approach, which consists both of dimensional analysis using Buckingham H Theorem and J-integral analysis based on classic fracture mechanics, to evaluate the fracture and fatigue on asphalt binder. It is discovered that the dimensional analysis could provide a new perspective to analyze the asphalt fracture and fatigue cracking mechanism.