Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensi...Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.展开更多
Nd content was varied in Nd13.2-xFe80.8+xB6(x = 0, 0.5, 1, and 1.5) to optimize the magnetic properties of sintered Nd–Fe–B/Tb–Fe–B composite magnets, which were prepared by mixing 9 g of Nd–Fe–B with 1 g of Tb1...Nd content was varied in Nd13.2-xFe80.8+xB6(x = 0, 0.5, 1, and 1.5) to optimize the magnetic properties of sintered Nd–Fe–B/Tb–Fe–B composite magnets, which were prepared by mixing 9 g of Nd–Fe–B with 1 g of Tb17Fe75B8 powder.In conventional magnets, by reducing Nd content, the coercivity of 10.4 kOe in Nd13.2Fe80.8B6 decreases to 7.2 kOe in Nd12.2Fe81.8B6;meanwhile, in Nd–Fe–B/Tb–Fe–B magnets the coercivity does not decrease when reducing Nd content.In the intergranular phase, the Tb content increases owing to the reducing Nd content of the Nd–Fe–B alloy in the sintered composite magnets.Therefore, the excess Tb in Tb17Fe75B8 enters the intergranular phase, and more Tb atoms can substitute for Nd at the grain boundary of the Nd–Fe–B phase, leading to a more significant increase in coercivity.The remanence increases with reducing Nd content, and the energy product of 39.1 MGOe with a high coercivity of 21.0 kOe is obtained in Nd12.2Fe81.8B6/Tb17Fe75B8 magnets.These investigations show that magnetic properties can be further improved by regulating the element distribution in sintered composite magnets.展开更多
In this study, the effect of wheel speed and mischmetal(MM) content on the magnetic properties of MMFeB ribbons was investigated. The samples were prepared via direct solidification technique. The nominal compositio...In this study, the effect of wheel speed and mischmetal(MM) content on the magnetic properties of MMFeB ribbons was investigated. The samples were prepared via direct solidification technique. The nominal composition of the alloy ingots is MM;Fe;B;with x varying from 9 to 15 in steps of 2. Experimental results show the overall magnetic properties of the ribbons.Analysis of the results shows that the magnetic properties first improve and then degrade with the wheel speed and MM content increasing. Increase in MM content leads to better formation of crystal texture in the ribbons, indicating that the a-Fe phase might undermine the formation of crystal texture. Magnetic properties results show that the coercivity of the ribbons rises with an appropriate increase in both MM content and wheel speed during melt-spun process. The strongest magnetic properties of the ribbons(remanence of M;= 0.72 T, intrinsic coercivity of H;= 352.58 kA·m;, and maximum energy product of(BH);=72.14 kJ·m;) are obtained for compositions where x = 13 and a wheel speed of v = 20 m·s;.展开更多
The magnetic properties and microstructure of sintered R-Fe-B(R, rare earth) magnets with nominal composition of((PrNd)(1-x)MMx)(30)Fe(bal)B1(x = 0, 0.1.0.2,0.3, 0.4, 0.5 and 0.7; MM, misch metal) prepar...The magnetic properties and microstructure of sintered R-Fe-B(R, rare earth) magnets with nominal composition of((PrNd)(1-x)MMx)(30)Fe(bal)B1(x = 0, 0.1.0.2,0.3, 0.4, 0.5 and 0.7; MM, misch metal) prepared using dual-alloy method were investigated. For x = 0.3, the maximum energy product((BH)(max)) of the sintered magnet is higher than 318.4 kJ·m^-3,but intrinsic coercivity(H(cj)) is lower than 351.8 kA·m^-1. The La and Ce contents are obviously different in some matrix-phase grains, which proves that the multi-hard magnetic phases(La, Ce-rich and La, Ce-lean) exist in the magnets. The coercivity is improved by the method of doping PrNd nanoparticles without sacrificing other magnetic properties. An enhancement in coercivity from 517.2 to 872.9 kA·m^-1 is achieved by doping 5 wt% PrNd nanoparticles. Meanwhile, it could exhibit better magnetic properties(remanence Br = 1.332 T.intrinsic coercivity H(cj)= 872.9 kA·m^-1 maximum energy product(BH)(max)=318.6 kJ·m^-3) and make the distribution of the intergranular phase become more homogeneous.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700900)the National Natural Science Foundation of China(Grant Nos.51571126 and 51861030)+1 种基金the Inner Mongolia Autonomous Region Natural Science Foundation of China(Grant No.2019MS01002)the Inner Mongolia Innovative Research Team of China(Grant No.3400102)。
文摘Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51861030 and 51571126)the National Key Research and Development Program of China(Grant No.2016YFB0700900)
文摘Nd content was varied in Nd13.2-xFe80.8+xB6(x = 0, 0.5, 1, and 1.5) to optimize the magnetic properties of sintered Nd–Fe–B/Tb–Fe–B composite magnets, which were prepared by mixing 9 g of Nd–Fe–B with 1 g of Tb17Fe75B8 powder.In conventional magnets, by reducing Nd content, the coercivity of 10.4 kOe in Nd13.2Fe80.8B6 decreases to 7.2 kOe in Nd12.2Fe81.8B6;meanwhile, in Nd–Fe–B/Tb–Fe–B magnets the coercivity does not decrease when reducing Nd content.In the intergranular phase, the Tb content increases owing to the reducing Nd content of the Nd–Fe–B alloy in the sintered composite magnets.Therefore, the excess Tb in Tb17Fe75B8 enters the intergranular phase, and more Tb atoms can substitute for Nd at the grain boundary of the Nd–Fe–B phase, leading to a more significant increase in coercivity.The remanence increases with reducing Nd content, and the energy product of 39.1 MGOe with a high coercivity of 21.0 kOe is obtained in Nd12.2Fe81.8B6/Tb17Fe75B8 magnets.These investigations show that magnetic properties can be further improved by regulating the element distribution in sintered composite magnets.
基金financially supported by the National Natural Science Foundation of China (Nos. 51461033, 51571126, 51541105, and 11547032)the Inner Mongolia Innovative Research Team (No. 3400102)+3 种基金the Inner Mongolia Science Foundation (No. 2013MS0110)the Provincial Major Science and Technology Project of Inner Mongolia (No. 2009J1006)the Baotou Major Research Project Special for Rare Earth (No. 2012R1006)the Inner Mongolia University of Science and Technology Innovation Fund
文摘In this study, the effect of wheel speed and mischmetal(MM) content on the magnetic properties of MMFeB ribbons was investigated. The samples were prepared via direct solidification technique. The nominal composition of the alloy ingots is MM;Fe;B;with x varying from 9 to 15 in steps of 2. Experimental results show the overall magnetic properties of the ribbons.Analysis of the results shows that the magnetic properties first improve and then degrade with the wheel speed and MM content increasing. Increase in MM content leads to better formation of crystal texture in the ribbons, indicating that the a-Fe phase might undermine the formation of crystal texture. Magnetic properties results show that the coercivity of the ribbons rises with an appropriate increase in both MM content and wheel speed during melt-spun process. The strongest magnetic properties of the ribbons(remanence of M;= 0.72 T, intrinsic coercivity of H;= 352.58 kA·m;, and maximum energy product of(BH);=72.14 kJ·m;) are obtained for compositions where x = 13 and a wheel speed of v = 20 m·s;.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0700903)the National Natural Science Foundation of China (No.51571126)+3 种基金the Inner Mongolia Innovative Research Team(No.3400102)the Innovative Science and Technology Project of Inner Mongolia (No.4140300502)the Science and Technology Project of Baotou (Nos.2012R1006 and 2015C2006-13)the Science and Technology Innovation Project of University (No.2014QDL003)
文摘The magnetic properties and microstructure of sintered R-Fe-B(R, rare earth) magnets with nominal composition of((PrNd)(1-x)MMx)(30)Fe(bal)B1(x = 0, 0.1.0.2,0.3, 0.4, 0.5 and 0.7; MM, misch metal) prepared using dual-alloy method were investigated. For x = 0.3, the maximum energy product((BH)(max)) of the sintered magnet is higher than 318.4 kJ·m^-3,but intrinsic coercivity(H(cj)) is lower than 351.8 kA·m^-1. The La and Ce contents are obviously different in some matrix-phase grains, which proves that the multi-hard magnetic phases(La, Ce-rich and La, Ce-lean) exist in the magnets. The coercivity is improved by the method of doping PrNd nanoparticles without sacrificing other magnetic properties. An enhancement in coercivity from 517.2 to 872.9 kA·m^-1 is achieved by doping 5 wt% PrNd nanoparticles. Meanwhile, it could exhibit better magnetic properties(remanence Br = 1.332 T.intrinsic coercivity H(cj)= 872.9 kA·m^-1 maximum energy product(BH)(max)=318.6 kJ·m^-3) and make the distribution of the intergranular phase become more homogeneous.