In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 a...In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 as the main research object, this paper analyzed the research status of different fertilization modes from the perspectives of annual number of published papers, published journals, keywords and highly cited papers applying the bibliometrics research method. This study provides reference for the research in this field.展开更多
[Objectives]This study was conducted to clarify the enrichment and paucity of trace elements in the soil environment of peach orchards in Zunyi City,and to provide reference for supplementary application of microeleme...[Objectives]This study was conducted to clarify the enrichment and paucity of trace elements in the soil environment of peach orchards in Zunyi City,and to provide reference for supplementary application of microelement fertilizers and high-quality peach production in peach orchards.[Methods]Taking the soil of three typical peach orchards(Taoli Renjia peach orchard,Pengrui peach orchard and Taohuadao peach orchard)in Shenxi Town,Honghuagang District,Zunyi City as the research object,the contents of trace elements in soil were analyzed through field sampling and indoor determination of trace elements.[Results]The effective contents of trace elements in the soil of peach orchard bases in the study area were at a medium level,and the soil of the peach orchards was rich in available Fe and Se.The contents of available Cu,Mo and Mn were relatively rich.The contents of available B were not high overall.The contents of available Zn were at a moderate to low level overall.The soil of Taoli Renjia peach orchard was relatively rich in trace elements.[Conclusions]The research results can provide a scientific basis for the production of high-quality crispy peaches in peach orchards.展开更多
Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphe...Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphene dispersion on the thickening efect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modifed graphene ([P_(66614)][DEHP]-G). Then lithium complex grease was prepared by saponifcation with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefn (PAO20) as base oil and the modifed-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modifed-graphene lithium complex grease ofered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefcient and wear volume up to 18.84% and 67.34%, respectively. With base oil overfow and afux, well-dispersed [P_(66614)][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition flm. The synergy of deposited graphene-flm, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.展开更多
Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of las...Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower.展开更多
In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments...In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments are the variables for the governing equations. The main difference from other HWENOschemes existing in the literature is that we add high-order numerical damping terms in the first-order momentequations to control spurious oscillations for the OF-HWENO scheme. The OF-HWENO scheme not only canachieve the designed optimal numerical order, but also can be easily implemented as we use only one set ofstencils in the reconstruction procedure and the same reconstructed polynomials are applied for the zeroth- andfirst-order moment equations. In order to obtain the adaptive order resolution when facing discontinuities, atransition polynomial is added in the reconstruction, where the associated linear weights can also be any positivenumbers as long as their summation equals one. In addition, the OF-HWENO scheme still keeps compactnessas only immediate neighbor values are needed in the space discretization. Some benchmark numerical tests areperformed to illustrate the high-order accuracy, high resolution and robustness of the proposed scheme.展开更多
Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter f...Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter for saline-alkali soils with front-axis positive rotation of the front axle and rear-axis counter-rotation of the rear axle was developed,focusing on the kinetic properties of the straw and soil under positive and counter-rotation.In addition,the most important structural parameters and the arrangement of the front-axis stubble cutting knife and the rear-axis return knife were analyzed and determined.Hertz-Mindlin with bonding was used to create a discrete element model of the agglomerate of implement,straw and soil.The forward speed,horizontal distance and vertical distance were used as test factors,and the straw return rate and soil fragmentation rate were used as test indexes to analyze the straw-soil transport law under different operating parameters from a microscopic point of view,and then Design-Expert was used to conduct the test 1.07 km/h,horizontal distance of 569.55 mm,vertical distance of 176.59 mm.To validate the performance of the two-axis,layered rotary tiller,a field trial was conducted and the results show that the straw return ratio was(91.59±0.41)%,soil fragmentation ratio was(91.90±0.29)%and tillage depth stability was(91.52±0.46)%,which met the requirements for peanut seedbed preparation on saline-alkali land.展开更多
This report describes the oxidative cyclopalladation activation of a C≡C bond during the Pd-catalyzed hydroalkylation of alkynes and analyzes potential reaction pathways based on density functional theory calculation...This report describes the oxidative cyclopalladation activation of a C≡C bond during the Pd-catalyzed hydroalkylation of alkynes and analyzes potential reaction pathways based on density functional theory calculations. The more favorable pathway in-volves an oxidative cyclopalladation to generate a palladacyclopropene intermediate, which is rarely examined in Pd-catalyzed alkyne transformations. The reaction pathway proposed herein is kinetically favorable relative to the commonly proposed alkyne insertion mode. Furthermore, the Laplacians of the electron density, interaction region indicators, Mayer bond orders, and localized orbital bonding are evaluated to determine the reaction processes and characterize the key intermediates. Theoretical calculations indicate covalent bonding between a Pd(II) center and the two C-atoms in three-membered palladacycle species. Finally, electrostatic potential analysis reveals that the regioselectivity is governed by the charge distribution on the palladacycle moiety during the protonation step.展开更多
Microstructure with globularαphase is desirable as it contributes to preferable comprehensive mechanical properties for titanium alloys.However,titanium alloys fabricated by directed energy deposition(DED)are mainly ...Microstructure with globularαphase is desirable as it contributes to preferable comprehensive mechanical properties for titanium alloys.However,titanium alloys fabricated by directed energy deposition(DED)are mainly characterized by the lamellarαphase within the basket-weave microstructure,which often leads to severe anisotropy and inferior low cycle fatigue(LCF)properties.To address this,the subcritical annealing and the cyclic annealing were applied to DED Ti–6Al–4V in order to achieve the transformation from the lamellarαphase to the globularαphase.The microstructural characteristics and the globularization behavior ofαphase during heat treatment were investigated.The results show that the aspect ratio ofαis significantly decreased with the subcritical annealing due to the coarsening of lamellarα.Furthermore,the globularαis obtained with the cyclic annealing as a combination result of the termination dissolution and the side surface growth of the lamellarα.These contribute to a pronounced reduction of 85.4%in the ductility anisotropy,compared with the as-built specimens,and superior comprehensive mechanical properties including LCF are achieved with the formation of globularα.展开更多
Laser cladding deposited Ti-6Al-4V titanium alloy universally shows more complex microstructures,each of which has significant effect on mechanical properties. Of particular α/β interface phase has been observed in ...Laser cladding deposited Ti-6Al-4V titanium alloy universally shows more complex microstructures,each of which has significant effect on mechanical properties. Of particular α/β interface phase has been observed in this paper under certain conditions. It demonstrates that the influence of the α/β interface phase on the tensile properties is closely associated with dislocations and twin substructure through comparison experiments. The results show that the α/β interface phase hinders dislocation motion and decreases effective slip length. In addition, the twin substructure has been activated in the α/β interface phase during tensile process and has acted somehow like grain boundaries. Therefore, the strength and the work-hardening rate of the laser cladding deposited Ti-6Al-4V titanium alloy have been significantly improved due to the dynamic Hall-Petch effect. Besides, the α/β interface phase leads to more uniform dislocations distribution, which implies that relative lower local concentrated stress will be produced along the α/β interface phase or colony boundary after the same amount of plastic deformation. Moreover,the twinning-induced plasticity effects in the α/β interface phase further increase the plastic deformation capacity. These results in higher elongation for the laser cladding deposited Ti-6Al-4V titanium alloy.It can be concluded that the current work suggests an effective method to simultaneously improve the strength and plasticity of laser cladding deposited Ti-6Al-4V titanium alloy based on the α/β interface phase.展开更多
The Nanling-Xuancheng ore region of Anhui Province is located in the Middle-Lower Yangtze River metallogenic belt.Insufficient exploration and research have been carried out in this newly defined ore district,although...The Nanling-Xuancheng ore region of Anhui Province is located in the Middle-Lower Yangtze River metallogenic belt.Insufficient exploration and research have been carried out in this newly defined ore district,although the Chating large porphyry Cu-Au deposit and a few middle-sized skarntype Cu polymetallic deposits have been discovered.In this study,we carried out high-resolution seismic reflection,magnetotelluric,gravity,and magnetic investigations,and constructed the 3 D geological structure of the uppermost crust in a depth range of 0-5 km using a comprehensive inversion of the new data constrained by previous deep-drilling data.We hence proposed some new insights to understand the mineralization processes of this district.A system of alternating ridges and valleys is suggested as the major structure pattern,composed of“two-layer structure”of the basins and“three-layer structure”of anticlines.Moreover,a conjugated fault system and its distribution features are revealed in our models,including the Jiangnan fault,Zhouwang fault,and Kunshan thrust nappe.The Jiangnan and Kunshan faults are suggested to have controlled the diagenesis and metallogenesis.Two deep concealed plutons located in Chating and Magushan are found,forming the Mesozoic diorite-felsic intrusions.These intrusions are believed to be the causes of hydrothermal deposits such as the Chating deposit and the Magushan deposit.展开更多
Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we rep...Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we report the first Watt-level all-fiber CW Pr3t-doped laser operating directly in the green spectral region,addressing the aforementioned difficulties.The compact all-fiber laser consists of a double-clad Pr3t-doped fluoride fiber,two homemade fiber dichroic mirrors at visible wavelengths,and a 443-nm fiber-pigtailed pump source.Benefitting from>10 MW∕cm2 high damage intensity of our designed fiber dielectric mirror,the green laser can stably deliver 3.62-W of continuous-wave power at∼521 nm with a slope efficiency of 20.9%.To the best of our knowledge,this is the largest output power directly from green fiber lasers,which is one order higher than previously reported.Moreover,these green all-fiber laser designs are optimized by using experiments and numerical simulations.Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length,output mirror reflectivity,and doping level should be considered to obtain higher power and efficiency.This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine,laser display,underwater detection,and spectroscopy.展开更多
The few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure was successfully prepared via vertically growing of MoS_(2) nanosheets on the few-layer Ti3C2Tx matrix using hydrothermal method.The tribological properties as ad...The few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure was successfully prepared via vertically growing of MoS_(2) nanosheets on the few-layer Ti3C2Tx matrix using hydrothermal method.The tribological properties as additive in mineral oil(150N)were evaluated in detail.The 0.3 wt% of few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure addition amount can reduce the friction and wear of 150N by 39% and 85%,respectively.Moreover,the enhancement effect of few-layer Ti_(3)C_(2)T_(x)/MoS_(2) on tribological properties of 150N is superior to that of few-layer Ti_(3)C_(2)T_(x),MoS_(2) nanosheets,and their mechanical mixture.Based on the characterization and analysis of wear debris and wear track,such excellent tribological properties of the few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure derive from its structural advantage toward good dispersion,the synergistic lubrication of Ti_(3)C_(2)T_(x) and MoS_(2) nanosheets during the rubbing process,and the formation of tribo-film.展开更多
基金Supported by Undergraduate Training Program for Innovation and Entrepreneurship of Guizhou Province(S202310664011)Natural Science Research Project of Guizhou Provincial Department of Education(QJJ[2022]067,QJJ[2023]043)Teaching Content and Curriculum System Reform Project of Colleges and Universities in Guizhou Province(GZJG20220776)。
文摘In order to grasp the research status of different fertilization modes in China s farmland more comprehensively, with papers in core journals of Chinese Peking University collected in CNKI database from 2003 to 2022 as the main research object, this paper analyzed the research status of different fertilization modes from the perspectives of annual number of published papers, published journals, keywords and highly cited papers applying the bibliometrics research method. This study provides reference for the research in this field.
基金Supported by Zunyi City-School Joint Science and Technology R&D Fund (ZSKH HZ Z[2023]159)Natural Science Research Project of Guizhou Provincial Department of Education (QJJ[2022]067+3 种基金QJJ[2023]043)Guizhou Provincial Scientific Special Commissioner Innovation and Entrepreneurship Service Training Demonstration Base (HHG2023001)Zunyi Science and Technology Support Program (ZSKHZC NS[2023]15)Science and Technology Cooperation Project of Honghuagang District,Zunyi City (ZHKHSZ[2022]03)。
文摘[Objectives]This study was conducted to clarify the enrichment and paucity of trace elements in the soil environment of peach orchards in Zunyi City,and to provide reference for supplementary application of microelement fertilizers and high-quality peach production in peach orchards.[Methods]Taking the soil of three typical peach orchards(Taoli Renjia peach orchard,Pengrui peach orchard and Taohuadao peach orchard)in Shenxi Town,Honghuagang District,Zunyi City as the research object,the contents of trace elements in soil were analyzed through field sampling and indoor determination of trace elements.[Results]The effective contents of trace elements in the soil of peach orchard bases in the study area were at a medium level,and the soil of the peach orchards was rich in available Fe and Se.The contents of available Cu,Mo and Mn were relatively rich.The contents of available B were not high overall.The contents of available Zn were at a moderate to low level overall.The soil of Taoli Renjia peach orchard was relatively rich in trace elements.[Conclusions]The research results can provide a scientific basis for the production of high-quality crispy peaches in peach orchards.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075458 and U2141211).
文摘Graphene as a lubricating additive holds great potential for industrial lubrication. However, its poor dispersity and compatibility with base oils and grease hinder maximizing performance. Here, the infuence of graphene dispersion on the thickening efect and lubrication function is considered. A well-dispersed lubricant additive was obtained via trihexyl tetradecyl phosphonium bis(2-ethylhexyl) phosphate modifed graphene ([P_(66614)][DEHP]-G). Then lithium complex grease was prepared by saponifcation with 12-OH stearic acid, sebacic acid, and lithium hydroxide, using polyalphaolefn (PAO20) as base oil and the modifed-graphene as lubricating additive, with the original graphene as a comparison. The physicochemical properties and lubrication performance of the as-prepared greases were evaluated in detail. The results show that the as-prepared greases have high dropping point and colloidal stability. Furthermore, modifed-graphene lithium complex grease ofered the best friction reduction and anti-wear abilities, manifesting the reduction of friction coefcient and wear volume up to 18.84% and 67.34%, respectively. With base oil overfow and afux, well-dispersed [P_(66614)][DEHP]-G was readily adsorbed to the worn surfaces, resulting in the formation of a continuous and dense graphene deposition flm. The synergy of deposited graphene-flm, spilled oil, and adhesive grease greatly improves the lubrication function of grease. This research paves the way for modulating high-performance lithium complex grease to reduce the friction and wear of movable machinery.
基金Project(2016YFB11000100)supported by the National Key Technologies R&D Program,ChinaProject(KP201611)supported by Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(51475380)supported by the National Natural Science Foundation of China
文摘Laser additive manufacturing technology with powder feeding was employed to repair wrought Ti17titanium alloy with small surface defects.The microstructure,micro-hardness and room temperature tensile properties of laser additive repaired(LARed)specimen were investigated.The results show that,cellular substructures are observed in the laser deposited zone(LDZ),rather than the typicalαlaths morphology due to lack of enough subsequent thermal cycles.The cellular substructures lead to lower micro-hardness in the LDZ compared with the wrought substrate zone which consists of duplex microstructure.The tensile test results indicate that the tensile deformation process of the LARed specimen exhibits a characteristic of dramatic plastic strain heterogeneity and fracture in the laser repaired zone with a mixed dimple and cleavage mode.The tensile strength of the LARed specimen is slightly higher than that of the wrought specimen and the elongation of11.7%is lower.
基金supported by National Key R&D Program of China (Grant No. 2022YFA1004501)supported by the Postdoctoral Science Foundation of China (Grant No. 2021M702145)
文摘In this paper, the sixth-order oscillation-free Hermite weighted essentially non-oscillatory (OFHWENO) scheme is proposed for hyperbolic conservation laws on structured meshes, where the zeroth- andfirst-order moments are the variables for the governing equations. The main difference from other HWENOschemes existing in the literature is that we add high-order numerical damping terms in the first-order momentequations to control spurious oscillations for the OF-HWENO scheme. The OF-HWENO scheme not only canachieve the designed optimal numerical order, but also can be easily implemented as we use only one set ofstencils in the reconstruction procedure and the same reconstructed polynomials are applied for the zeroth- andfirst-order moment equations. In order to obtain the adaptive order resolution when facing discontinuities, atransition polynomial is added in the reconstruction, where the associated linear weights can also be any positivenumbers as long as their summation equals one. In addition, the OF-HWENO scheme still keeps compactnessas only immediate neighbor values are needed in the space discretization. Some benchmark numerical tests areperformed to illustrate the high-order accuracy, high resolution and robustness of the proposed scheme.
基金sponsored by the Shandong Province Key R&D Program(Major Science and Technology Innovation Project)(Grant No.2021CXGC010813)Saline land tillage mechanization equipment research and development,manufacturing and popularization of application(Grant No.NJYTHSD-202314).
文摘Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter for saline-alkali soils with front-axis positive rotation of the front axle and rear-axis counter-rotation of the rear axle was developed,focusing on the kinetic properties of the straw and soil under positive and counter-rotation.In addition,the most important structural parameters and the arrangement of the front-axis stubble cutting knife and the rear-axis return knife were analyzed and determined.Hertz-Mindlin with bonding was used to create a discrete element model of the agglomerate of implement,straw and soil.The forward speed,horizontal distance and vertical distance were used as test factors,and the straw return rate and soil fragmentation rate were used as test indexes to analyze the straw-soil transport law under different operating parameters from a microscopic point of view,and then Design-Expert was used to conduct the test 1.07 km/h,horizontal distance of 569.55 mm,vertical distance of 176.59 mm.To validate the performance of the two-axis,layered rotary tiller,a field trial was conducted and the results show that the straw return ratio was(91.59±0.41)%,soil fragmentation ratio was(91.90±0.29)%and tillage depth stability was(91.52±0.46)%,which met the requirements for peanut seedbed preparation on saline-alkali land.
基金supported by the National Natural Science Foundation of China(Nos.22003006,21822303,22103008,22271034)Project supported by graduate research and innovation foundation of Chongqing,China(No.CYB20045)a project(No.2018CDXZ0002)supported by the Fundamental Research Funds for the Central Universities(Chongqing University)。
文摘This report describes the oxidative cyclopalladation activation of a C≡C bond during the Pd-catalyzed hydroalkylation of alkynes and analyzes potential reaction pathways based on density functional theory calculations. The more favorable pathway in-volves an oxidative cyclopalladation to generate a palladacyclopropene intermediate, which is rarely examined in Pd-catalyzed alkyne transformations. The reaction pathway proposed herein is kinetically favorable relative to the commonly proposed alkyne insertion mode. Furthermore, the Laplacians of the electron density, interaction region indicators, Mayer bond orders, and localized orbital bonding are evaluated to determine the reaction processes and characterize the key intermediates. Theoretical calculations indicate covalent bonding between a Pd(II) center and the two C-atoms in three-membered palladacycle species. Finally, electrostatic potential analysis reveals that the regioselectivity is governed by the charge distribution on the palladacycle moiety during the protonation step.
基金This work was financially supported by the National Natural Science Foundation of China(No.52275381)the Nation Defense Basic Scientific Research Program of China(No.JCKY2017204A021)the Shaanxi Province double chain fusion project(No.2021LLRH-08).
文摘Microstructure with globularαphase is desirable as it contributes to preferable comprehensive mechanical properties for titanium alloys.However,titanium alloys fabricated by directed energy deposition(DED)are mainly characterized by the lamellarαphase within the basket-weave microstructure,which often leads to severe anisotropy and inferior low cycle fatigue(LCF)properties.To address this,the subcritical annealing and the cyclic annealing were applied to DED Ti–6Al–4V in order to achieve the transformation from the lamellarαphase to the globularαphase.The microstructural characteristics and the globularization behavior ofαphase during heat treatment were investigated.The results show that the aspect ratio ofαis significantly decreased with the subcritical annealing due to the coarsening of lamellarα.Furthermore,the globularαis obtained with the cyclic annealing as a combination result of the termination dissolution and the side surface growth of the lamellarα.These contribute to a pronounced reduction of 85.4%in the ductility anisotropy,compared with the as-built specimens,and superior comprehensive mechanical properties including LCF are achieved with the formation of globularα.
基金supported by the National Key Research And Development Plan, China (No. 2016YFB1100100)the Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China (No. KP201611)the National Natural Science Foundation of China (No. 51475380)
文摘Laser cladding deposited Ti-6Al-4V titanium alloy universally shows more complex microstructures,each of which has significant effect on mechanical properties. Of particular α/β interface phase has been observed in this paper under certain conditions. It demonstrates that the influence of the α/β interface phase on the tensile properties is closely associated with dislocations and twin substructure through comparison experiments. The results show that the α/β interface phase hinders dislocation motion and decreases effective slip length. In addition, the twin substructure has been activated in the α/β interface phase during tensile process and has acted somehow like grain boundaries. Therefore, the strength and the work-hardening rate of the laser cladding deposited Ti-6Al-4V titanium alloy have been significantly improved due to the dynamic Hall-Petch effect. Besides, the α/β interface phase leads to more uniform dislocations distribution, which implies that relative lower local concentrated stress will be produced along the α/β interface phase or colony boundary after the same amount of plastic deformation. Moreover,the twinning-induced plasticity effects in the α/β interface phase further increase the plastic deformation capacity. These results in higher elongation for the laser cladding deposited Ti-6Al-4V titanium alloy.It can be concluded that the current work suggests an effective method to simultaneously improve the strength and plasticity of laser cladding deposited Ti-6Al-4V titanium alloy based on the α/β interface phase.
基金supported by the National Key R&D Program Project of China(No.2016YFC0600209)。
文摘The Nanling-Xuancheng ore region of Anhui Province is located in the Middle-Lower Yangtze River metallogenic belt.Insufficient exploration and research have been carried out in this newly defined ore district,although the Chating large porphyry Cu-Au deposit and a few middle-sized skarntype Cu polymetallic deposits have been discovered.In this study,we carried out high-resolution seismic reflection,magnetotelluric,gravity,and magnetic investigations,and constructed the 3 D geological structure of the uppermost crust in a depth range of 0-5 km using a comprehensive inversion of the new data constrained by previous deep-drilling data.We hence proposed some new insights to understand the mineralization processes of this district.A system of alternating ridges and valleys is suggested as the major structure pattern,composed of“two-layer structure”of the basins and“three-layer structure”of anticlines.Moreover,a conjugated fault system and its distribution features are revealed in our models,including the Jiangnan fault,Zhouwang fault,and Kunshan thrust nappe.The Jiangnan and Kunshan faults are suggested to have controlled the diagenesis and metallogenesis.Two deep concealed plutons located in Chating and Magushan are found,forming the Mesozoic diorite-felsic intrusions.These intrusions are believed to be the causes of hydrothermal deposits such as the Chating deposit and the Magushan deposit.
基金the National Science Fund for Excellent Young Scholars(62022069)Shenzhen Science and Technology Projects(JCYJ20210324115813037)+2 种基金National Natural Science Foundation of China(62105272)Technology Development Program from Huawei Technologies Co.,Ltd.,Fundamental Research Funds for the Central Universities(20720200068)National Key Research and Development Program of China(2020YFC2200400).
文摘Green semiconductor lasers are still undeveloped,so high-power green lasers have heavily relied on nonlinear frequency conversion of near-infrared lasers,precluding compact and low-cost green laser systems.Here,we report the first Watt-level all-fiber CW Pr3t-doped laser operating directly in the green spectral region,addressing the aforementioned difficulties.The compact all-fiber laser consists of a double-clad Pr3t-doped fluoride fiber,two homemade fiber dichroic mirrors at visible wavelengths,and a 443-nm fiber-pigtailed pump source.Benefitting from>10 MW∕cm2 high damage intensity of our designed fiber dielectric mirror,the green laser can stably deliver 3.62-W of continuous-wave power at∼521 nm with a slope efficiency of 20.9%.To the best of our knowledge,this is the largest output power directly from green fiber lasers,which is one order higher than previously reported.Moreover,these green all-fiber laser designs are optimized by using experiments and numerical simulations.Numerical results are in excellent agreement with our experimental results and show that the optimal gain fiber length,output mirror reflectivity,and doping level should be considered to obtain higher power and efficiency.This work may pave a path toward compact high-power green all-fiber lasers for applications in biomedicine,laser display,underwater detection,and spectroscopy.
基金The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China(No.52075458)Sichuan Science and Technology Program(No.2021JDRC0094).
文摘The few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure was successfully prepared via vertically growing of MoS_(2) nanosheets on the few-layer Ti3C2Tx matrix using hydrothermal method.The tribological properties as additive in mineral oil(150N)were evaluated in detail.The 0.3 wt% of few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure addition amount can reduce the friction and wear of 150N by 39% and 85%,respectively.Moreover,the enhancement effect of few-layer Ti_(3)C_(2)T_(x)/MoS_(2) on tribological properties of 150N is superior to that of few-layer Ti_(3)C_(2)T_(x),MoS_(2) nanosheets,and their mechanical mixture.Based on the characterization and analysis of wear debris and wear track,such excellent tribological properties of the few-layer Ti_(3)C_(2)T_(x)/MoS_(2) heterostructure derive from its structural advantage toward good dispersion,the synergistic lubrication of Ti_(3)C_(2)T_(x) and MoS_(2) nanosheets during the rubbing process,and the formation of tribo-film.