期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High performance integrated photonic circuit based on inverse design method 被引量:6
1
作者 Huixin Qi zhuochen du +3 位作者 Xiaoyong Hu Jiayu Yang Saisai Chu Qihuang Gong 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期22-34,共13页
The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The... The basic indexes of all-optical integrated photonic circuits include high-density integration,ultrafast response and ultralow energy consumption.Traditional methods mainly adopt conventional micro/nano-structures.The overall size of the circuit is large,usually reaches hundreds of microns.Besides,it is difficult to balance the ultrafast response and ultra-low energy consumption problem,and the crosstalk between two traditional devices is difficult to overcome.Here,we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density,ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate.The feature size of the whole circuit is only 2.5μm×7μm,and that of a single device is 2μm×2μm.The distance between two adjacent devices is as small as 1.5μm,within wavelength magnitude scale.Theoretical response time of the circuit is 150 fs,and the threshold energy is within 10 fJ/bit.We have also considered the crosstalk problem.The circuit also realizes a function of identifying two-digit logic signal results.Our work provides a new idea for the design of ultrafast,ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits. 展开更多
关键词 all-optical integrated photonic circuit inverse design all-optical switch all-optical XOR logic gate
下载PDF
Spin‑controlled topological phase transition in non‑Euclidean space
2
作者 zhuochen du Jinze Gao +3 位作者 Qiuchen Yan Cuicui Lu Xiaoyong Hu Qihuang Gong 《Frontiers of Optoelectronics》 EI CSCD 2024年第1期67-76,共10页
Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields,and has been realized in Euclidean systems,such as topological photonic crystals,topologic... Modulation of topological phase transition has been pursued by researchers in both condensed matter and optics research fields,and has been realized in Euclidean systems,such as topological photonic crystals,topological metamaterials,and coupled resonator arrays.However,the spin-controlled topological phase transition in non-Euclidean space has not yet been explored.Here,we propose a non-Euclidean configuration based on Mobius rings,and we demonstrate the spin-controlled transition between the topological edge state and the bulk state.The Mobius ring,which is designed to have an 8πperiod,has a square cross section at the twist beginning and the length/width evolves adiabatically along the loop,accompanied by conversion from transverse electric to transverse magnetic modes resulting from the spin-locked effect.The 8πperiod Mobius rings are used to construct Su–Schrieffer–Heeger configuration,and the configuration can support the topological edge states excited by circularly polarized light,and meanwhile a transition from the topological edge state to the bulk state can be realized by controlling circular polarization.In addition,the spin-controlled topological phase transition in non-Euclidean space is feasible for both Hermitian and non-Hermitian cases in 2D systems.This work provides a new degree of polarization to control topological photonic states based on the spin of Mobius rings and opens a way to tune the topological phase in non-Euclidean space. 展开更多
关键词 Topological phase transition Non-Euclidean space Möbius ring Spin-locked effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部