A compact D–D neutron generator, with a peak neutron yield of D–D reactions up to 2.48×10~8 n/s is being developed at Lanzhou University in China for application in real-time neutron activation analysis. During...A compact D–D neutron generator, with a peak neutron yield of D–D reactions up to 2.48×10~8 n/s is being developed at Lanzhou University in China for application in real-time neutron activation analysis. During tests, the problem of back acceleration of secondary electrons liberated from the neutron production target by deuterium ions bombardment was encountered. In this study,an electric field method and a magnetic field method for suppressing secondary electrons are designed and experimentally investigated. The experimental results show that the electric field method is superior to the magnetic field method. Effective suppression of the secondary electrons can be achieved via electrostatic suppression when the bias voltage between the target and the extraction-accelerating electrode is >204 V. Furthermore, the secondary electron emission coefficient for the mixed deuterium ion(D_1^+,D_2^+, and D_3^+) impacting on molybdenum is estimated. In the deuterium energy range of 80–120 keV, the estimated secondary electron emission coefficients are approximately 5–5.5 for the mixed deuterium ion glancing incidence of 45° and approximately 3.5–3.9 for the mixed deuterium ion normal incidence.展开更多
基金supported by the National Key Scientific Instrument and Equipment Development Project of China(2013YQ40861)the National Natural Science Foundations of China(11875155,11705071)the Fundamental Research Funds for the Central Universities of China(lzujbky-2019-kb09)
文摘A compact D–D neutron generator, with a peak neutron yield of D–D reactions up to 2.48×10~8 n/s is being developed at Lanzhou University in China for application in real-time neutron activation analysis. During tests, the problem of back acceleration of secondary electrons liberated from the neutron production target by deuterium ions bombardment was encountered. In this study,an electric field method and a magnetic field method for suppressing secondary electrons are designed and experimentally investigated. The experimental results show that the electric field method is superior to the magnetic field method. Effective suppression of the secondary electrons can be achieved via electrostatic suppression when the bias voltage between the target and the extraction-accelerating electrode is >204 V. Furthermore, the secondary electron emission coefficient for the mixed deuterium ion(D_1^+,D_2^+, and D_3^+) impacting on molybdenum is estimated. In the deuterium energy range of 80–120 keV, the estimated secondary electron emission coefficients are approximately 5–5.5 for the mixed deuterium ion glancing incidence of 45° and approximately 3.5–3.9 for the mixed deuterium ion normal incidence.