Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a“disease”.Brown adipose tissue(BAT)thermogenesis and white adipose tissue(WAT)browning emerge as a potential strateg...Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a“disease”.Brown adipose tissue(BAT)thermogenesis and white adipose tissue(WAT)browning emerge as a potential strategy of anti-obesity by dissipating energy as heat.However,drugs based on adipose tissue thermogenesis have not been successfully approved yet.In current study,we found that black tea extract(BTE)obtained by patentauthorized manufacturing process prevented body weight gain as novel thermogenic activator with reduction of adiposity,improvement of adipose distribution,and glucose metabolism improvement in diet-induced obesity mice.Mechanismly,anti-obesity effect of BTE depends on promoting BAT thermogenesis and WAT browning with upregulation of uncoupling protein 1(UCP1),especially visceral adipose tissue(VAT)with browning resistance.Specifically,utilizing in silico approach of network pharmacology and molecular docking,we identified carbonic anhydrase 2(CA2)in nitrogen metabolism as anti-obesity target of BTE and further elucidated that protein kinase B(AKT)signaling pathway linked CA2 and UCP1.Meanwhile gut microbiota regulation may prompt the CA2-dependent thermogenesis activation.Our findings demonstrated anti-obesity effect of BTE as thermogenic activator through CA2-mediated BAT thermogenesis and WAT browning via CA2-AKT-UCP1 signaling pathway,which could be developed as promising anti-obesity agent with good safety and efficacy.展开更多
[Objectives]The effects of stabilizers such as sodium carboxymethyl cellulose,pectin,sodium alginate and xanthan gum on the stability of mango juice with skin were discussed using mango as the raw material.[Methods]Th...[Objectives]The effects of stabilizers such as sodium carboxymethyl cellulose,pectin,sodium alginate and xanthan gum on the stability of mango juice with skin were discussed using mango as the raw material.[Methods]The formula and stability of mango beverage with skin were studied using mango juice with skin as the raw material.Four stabilizers,including pectin,sodium alginate and sodium carboxymethyl cellulose,were added to improve the stability of the juice.Based on single factor experiments and a response surface experiment,the stability model of mango juice was established to determine the best compound stabilizer.[Results]According to an orthogonal experiment on the stability of mango juice with skin,the optimum technical parameters were as follows:sodium carboxymethyl cellulose 0.20%,xanthan gum 0.08%,sodium alginate 0.18%,and pectin 0.14%,with which the optimal suspension stability was 69.12%.The optimum technical parameters from the response surface experiment were as follows:sodium carboxymethyl cellulose 0.199%,pectin 0.1185%,sodium alginate 0.163%,and xanthan gum 0.077%,with which the suspension stability was 70.32%.It was found that the stability of mango juice with skin obtained by the response surface experiment was better than that by the orthogonal experiment,and the order of factors affecting the stability of mango was sodium alginate(C)>sodium carboxymethyl cellulose(A)>pectin(D)>xanthan gum(B).[Conclusions]The formula of compound stabilizer for mango juice was optimized by the orthogonal experiment and the response surface method,providing a theoretical basis for the actual production of mango juice with skin.展开更多
Background Brain-derived neurotrophic factor(BDNF)is known to prevent methamphetamine(METH)-induced neurotoxicity and plays a role in various stages of METH addiction.However,there is a lack of research with longitudi...Background Brain-derived neurotrophic factor(BDNF)is known to prevent methamphetamine(METH)-induced neurotoxicity and plays a role in various stages of METH addiction.However,there is a lack of research with longitudinal design on changes in plasma BDNF levels in active METH-dependent individuals.Aims The aim of the study was to investigate changes in BDNF levels during METH self-administration in monkeys.Methods This study measured plasma BDNF levels in three male rhesus monkeys with continuous METH exposure and four male control rhesus monkeys without METH exposure.Changes in plasma BDNF levels were then assessed longitudinally during 40 sessions of METH self-administration in the three monkeys.Results Repeated METH exposure decreased plasma BDNF levels.Additionally,plasma BDNF decreased with long-term rather than short-term accumulation of METH during METH self-administration.Conclusions These findings may indicate that the changes in peripheral BDNF may reflect the quantity of accumulative METH intake during a frequent drug use period.展开更多
When a high-speed train approaches the insulated phase-splitting section embedded between neighbouring power supply arms,the vacuum circuit breaker(VCB)installed on trains must be disconnected to maintain the traction...When a high-speed train approaches the insulated phase-splitting section embedded between neighbouring power supply arms,the vacuum circuit breaker(VCB)installed on trains must be disconnected to maintain the traction power supply system as a no-load condition for completing phase-switching action,as the train passes through the phase-splitting section depending on its inertia.However,when operating VCBs,the arc is easily triggered between the mobile contacts inside,accompanied by an overvoltage impulse.Herein,to explore the generating mechanism of inrush current and operational overvoltage,a model describing the‘substation-catenary-train’traction power supply system is launched based on an equivalent circuit modelling technique.Through the analysis of the transient VCB operational process,the phase of catenary voltage is directly related to the characteristics of the VCB switching-on overvoltage,as the traction cur-rent's phase angle is relevant to the amplitude-frequency characteristics of the VCB switching-off overvoltage.Inrush current as a noteworthy element is related to the traction transformer's remanence.The automatic phase-switching technique is utilised to suppress both operational overvoltage and inrush current,as the optimal combination of VCB switching-on and switching-off phases considering the balance between overvoltage and inrush current is achieved based on the particle swarm algorithm.展开更多
Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,...Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO_(2)(p-n junction)and Ti_(3)C_(2)T_(x) MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO_(2),forming in-situ p-n junctions on the surface of Sn O.The hamburger-like SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensor exhibited improved acetone gas sensing response of 12.1(R_(g)/R_(a))at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti_(3)C_(2)T_(x) and pristine SnO-SnO_(2),respectively.Moreover,it expressed a short recovery time(9 s)and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti_(3)C_(2)T_(x) nanosheets,acting as a hole accumulation layer(HALs)between Ti_(3)C_(2)T_(x) and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti_(3)C_(2)T_(x) MXene in SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensors was discussed in detail.展开更多
Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor(CMOS)compatible visible-blind short-wavelength infrared(SWIR) silicon photodetector is of interest for security,telecommunic...Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor(CMOS)compatible visible-blind short-wavelength infrared(SWIR) silicon photodetector is of interest for security,telecommunications, and environmental sensing. Here, we present a silver-supersaturated silicon(Si:Ag)-based photodetector that exhibits a visible-blind and highly enhanced sub-bandgap photoresponse. The visible-blind response is caused by the strong surface-recombination-induced quenching of charge collection for short-wavelength excitation, and the enhanced sub-bandgap response is attributed to the deep-level electrontraps-induced band-bending and two-stage carrier excitation. The responsivity of the Si:Ag photodetector reaches 504 mA · W^(-1) at 1310 nm and 65 m A · W^(-1) at 1550 nm under-3 V bias, which stands on the stage as the highest level in the hyperdoped silicon devices previously reported. The high performance and mechanism understanding clearly demonstrate that the hyperdoped silicon shows great potential for use in optical interconnect and power-monitoring applications.展开更多
The availability and reliability of strategies for molecular biosensing over a finely adjustable dynamic range is essential to enhance the understanding and control of vital biological process. To expand the versatili...The availability and reliability of strategies for molecular biosensing over a finely adjustable dynamic range is essential to enhance the understanding and control of vital biological process. To expand the versatility and utility of nucleic acid- related enzymes, we demonstrated a rational approach to acquiring tunable, pH-dependent deoxyribozymes (DNAzymes) with catalytic activities and response sensitivities that can be tuned through a simple change in solution pH. To do this, we capitalized upon the pH dependence of Hoogsteen interactions and designed i-motif- and triplex-based DNAzymes that can be finely regulated with high precision over a physiologically relevant pH interval. The modified DNAzymes are dependent upon pH for efficient cleavage of substrates, and their catalytic performance can be tuned by regulating the sequence of inserted i-motif/triplex structures. The principle of tunable, pH-dependent DNAzymes provides the opportunity to engineer pH-controlled DNA-machinery devices with unprecedented sensitivity to pH changes. For example, we constructed a DNA-walker device, the stepping rate of which could be adjusted by simply modulating solution pH within an interval of 5.6 to 7.4, as well as a DNA tetrahedron that can be opened at pH 6.4 and kept closed at pH 7.4. The potential of this approach is not limited to serve as pH-dependent devices, but rather may be combined with other elements to expand their practical usefulness.展开更多
The pristine carbon nitride derived from the thermally-induced polymerization of nitrogen-containing precursors(e.g.cyanamide,dicyanamide,melamine and urea)displays low crystallinity because of the predominantly kinet...The pristine carbon nitride derived from the thermally-induced polymerization of nitrogen-containing precursors(e.g.cyanamide,dicyanamide,melamine and urea)displays low crystallinity because of the predominantly kinetic hindrance.Herein,we reported a modified molten-salts method to fabricate the crystalline carbon nitride under ambient pressure,which is expected to the large-scale production of crystalline carbon nitride.The obtained crystalline carbon nitride displayed about 3.0 times higher photocatalytic NO removal performance than that of pristine carbon nitride under visible light irradiation(λ<400 nm).Detailed experimental characterization and theoretical calculation revealed the crucial roles of crystallinity in crystalline carbon nitride for the enhanced photocatalytic NO removal performance.This research provided deep insights into the crystallinity of carbon nitride for the enhanced photocatalytic performance.展开更多
A promising microalgal strain isolated from fresh water,which can grow both autotrophically on inorganic carbon under lighting and heterotrophically on organic carbon without lighting,was identified as Chlorella sp.US...A promising microalgal strain isolated from fresh water,which can grow both autotrophically on inorganic carbon under lighting and heterotrophically on organic carbon without lighting,was identified as Chlorella sp.USTB-01 with the phylogenetic analysis based on 18S ribosomal ribonucleic acid(rRNA)gene sequences.In the heterotrophic batch culture,more than 20.0 g·L^(-1)of cell dry weight concentration(DWC)of Chlorella sp.USTB-01 was obtained at day 5,and which was used directly to seed the autotrophic culture.A novel fermentor-helical combined photobioreactor was established and used to cultivate Chlorella sp.USTB-01 for the fixation of carbon dioxide(CO_(2)).It showed that the autotrophic growth of Chlorella sp.USTB-01 in the combined photobioreactor was more effective than that in the fermentor alone and the maximum DWC of 2.5 g·L^(-1)was obtained at day 6.The highest CO_(2)fixation of 95%appeared on day 1 in the exponential growth phases of Chlorella sp.USTB-01 and 49.8%protein was found in the harvested microalgal cells.展开更多
基金funded by National Natural Science Foundation of China(NSFC 82070877)CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-JB-010,2021-I2M-1-005)The National High Technology Research and Development Program of China(2017YFE0112900).
文摘Obesity is a metabolic disorder due to over-accumulation of adipose tissue and ultimately becomes a“disease”.Brown adipose tissue(BAT)thermogenesis and white adipose tissue(WAT)browning emerge as a potential strategy of anti-obesity by dissipating energy as heat.However,drugs based on adipose tissue thermogenesis have not been successfully approved yet.In current study,we found that black tea extract(BTE)obtained by patentauthorized manufacturing process prevented body weight gain as novel thermogenic activator with reduction of adiposity,improvement of adipose distribution,and glucose metabolism improvement in diet-induced obesity mice.Mechanismly,anti-obesity effect of BTE depends on promoting BAT thermogenesis and WAT browning with upregulation of uncoupling protein 1(UCP1),especially visceral adipose tissue(VAT)with browning resistance.Specifically,utilizing in silico approach of network pharmacology and molecular docking,we identified carbonic anhydrase 2(CA2)in nitrogen metabolism as anti-obesity target of BTE and further elucidated that protein kinase B(AKT)signaling pathway linked CA2 and UCP1.Meanwhile gut microbiota regulation may prompt the CA2-dependent thermogenesis activation.Our findings demonstrated anti-obesity effect of BTE as thermogenic activator through CA2-mediated BAT thermogenesis and WAT browning via CA2-AKT-UCP1 signaling pathway,which could be developed as promising anti-obesity agent with good safety and efficacy.
基金Supported by Doctoral Research Start-up Fund of Department of Science&Technology of Liaoning Province (2021-BS-250)Doctoral Research Start-up Fund of Liaoning Institute of Science and Technology (2307B16)College Students Innovation and Entrepreneurship Training Program of Liaoning Institute of Science and Technology (202311430048).
文摘[Objectives]The effects of stabilizers such as sodium carboxymethyl cellulose,pectin,sodium alginate and xanthan gum on the stability of mango juice with skin were discussed using mango as the raw material.[Methods]The formula and stability of mango beverage with skin were studied using mango juice with skin as the raw material.Four stabilizers,including pectin,sodium alginate and sodium carboxymethyl cellulose,were added to improve the stability of the juice.Based on single factor experiments and a response surface experiment,the stability model of mango juice was established to determine the best compound stabilizer.[Results]According to an orthogonal experiment on the stability of mango juice with skin,the optimum technical parameters were as follows:sodium carboxymethyl cellulose 0.20%,xanthan gum 0.08%,sodium alginate 0.18%,and pectin 0.14%,with which the optimal suspension stability was 69.12%.The optimum technical parameters from the response surface experiment were as follows:sodium carboxymethyl cellulose 0.199%,pectin 0.1185%,sodium alginate 0.163%,and xanthan gum 0.077%,with which the suspension stability was 70.32%.It was found that the stability of mango juice with skin obtained by the response surface experiment was better than that by the orthogonal experiment,and the order of factors affecting the stability of mango was sodium alginate(C)>sodium carboxymethyl cellulose(A)>pectin(D)>xanthan gum(B).[Conclusions]The formula of compound stabilizer for mango juice was optimized by the orthogonal experiment and the response surface method,providing a theoretical basis for the actual production of mango juice with skin.
基金Funding for this study was provided by Brain Science and Brain-Like Intelligence Technology(2021ZD0202105)Shanghai‘the Hospital Garden Star’funding for the training of young medical professionals(20224Z0017)+7 种基金the National Natural Science Foundation of China(82171483),(82130041)Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)Shanghai Municipal Health Commission Talent Project(2022YQ048)Lingang Lab(Grant LG202106-03-01),(Grant LG202106-03-03)these fundings had no further role in study designin the collection,analysis and interpretation of datain the writing of the reportin the decision to submit the paper for publication.
文摘Background Brain-derived neurotrophic factor(BDNF)is known to prevent methamphetamine(METH)-induced neurotoxicity and plays a role in various stages of METH addiction.However,there is a lack of research with longitudinal design on changes in plasma BDNF levels in active METH-dependent individuals.Aims The aim of the study was to investigate changes in BDNF levels during METH self-administration in monkeys.Methods This study measured plasma BDNF levels in three male rhesus monkeys with continuous METH exposure and four male control rhesus monkeys without METH exposure.Changes in plasma BDNF levels were then assessed longitudinally during 40 sessions of METH self-administration in the three monkeys.Results Repeated METH exposure decreased plasma BDNF levels.Additionally,plasma BDNF decreased with long-term rather than short-term accumulation of METH during METH self-administration.Conclusions These findings may indicate that the changes in peripheral BDNF may reflect the quantity of accumulative METH intake during a frequent drug use period.
基金National Natural Science Foundation of China,Grant/Award Numbers:52277166,51922090,51837009。
文摘When a high-speed train approaches the insulated phase-splitting section embedded between neighbouring power supply arms,the vacuum circuit breaker(VCB)installed on trains must be disconnected to maintain the traction power supply system as a no-load condition for completing phase-switching action,as the train passes through the phase-splitting section depending on its inertia.However,when operating VCBs,the arc is easily triggered between the mobile contacts inside,accompanied by an overvoltage impulse.Herein,to explore the generating mechanism of inrush current and operational overvoltage,a model describing the‘substation-catenary-train’traction power supply system is launched based on an equivalent circuit modelling technique.Through the analysis of the transient VCB operational process,the phase of catenary voltage is directly related to the characteristics of the VCB switching-on overvoltage,as the traction cur-rent's phase angle is relevant to the amplitude-frequency characteristics of the VCB switching-off overvoltage.Inrush current as a noteworthy element is related to the traction transformer's remanence.The automatic phase-switching technique is utilised to suppress both operational overvoltage and inrush current,as the optimal combination of VCB switching-on and switching-off phases considering the balance between overvoltage and inrush current is achieved based on the particle swarm algorithm.
基金supported financially by the National Natural Science Foundation of China(Nos.,51572158 and 51972200)the Graduate Innovation Fund of Shaanxi University of Science&Technology+2 种基金funded by the Japan Society for the Promotion of Science(JSPS)Grant-in-Aid for the Scientific Research(KAKENHI Nos.20H00297 and Innovative Area“Mixed Anion”(No.16H06439))the Nippon Sheet Glass Foundation for Materials Science and Engineeringby the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices”。
文摘Acetone,as widely used reagents in industry and laboratories,are extremely harmful to the human.So the detection of acetone gas concentrations and leaks in special environments at room temperature is essential.Herein,the nanocomposite combining SnO-SnO_(2)(p-n junction)and Ti_(3)C_(2)T_(x) MXene was successfully synthesized by a one-step hydrothermal method.Because of the existence of a small amount of oxygen during the hydrothermal conditions,part of the p-type SnO was oxidized to n-type SnO_(2),forming in-situ p-n junctions on the surface of Sn O.The hamburger-like SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensor exhibited improved acetone gas sensing response of 12.1(R_(g)/R_(a))at room temperature,which were nearly 11 and 4 times higher than those of pristine Ti_(3)C_(2)T_(x) and pristine SnO-SnO_(2),respectively.Moreover,it expressed a short recovery time(9 s)and outstanding reproducibility.Because of the different work functions,the Schottky barrier was formed between the SnO and the Ti_(3)C_(2)T_(x) nanosheets,acting as a hole accumulation layer(HALs)between Ti_(3)C_(2)T_(x) and tin oxides.Herein,the sensing mechanism based on the formation of hetero-junctions and high conductivity of the metallic phase of Ti_(3)C_(2)T_(x) MXene in SnO-SnO_(2)/Ti_(3)C_(2)T_(x) sensors was discussed in detail.
基金National Natural Science Foundation of China(NSFC)(51532007,61574124,61721005)
文摘Developing a low-cost, room-temperature operated and complementary metal-oxide-semiconductor(CMOS)compatible visible-blind short-wavelength infrared(SWIR) silicon photodetector is of interest for security,telecommunications, and environmental sensing. Here, we present a silver-supersaturated silicon(Si:Ag)-based photodetector that exhibits a visible-blind and highly enhanced sub-bandgap photoresponse. The visible-blind response is caused by the strong surface-recombination-induced quenching of charge collection for short-wavelength excitation, and the enhanced sub-bandgap response is attributed to the deep-level electrontraps-induced band-bending and two-stage carrier excitation. The responsivity of the Si:Ag photodetector reaches 504 mA · W^(-1) at 1310 nm and 65 m A · W^(-1) at 1550 nm under-3 V bias, which stands on the stage as the highest level in the hyperdoped silicon devices previously reported. The high performance and mechanism understanding clearly demonstrate that the hyperdoped silicon shows great potential for use in optical interconnect and power-monitoring applications.
基金The authors thank the National Basic Research Pro- gram of China (973 Program) (Nos. 2012CB720600, 2012CB720603, and 2012CB720604), the National Natural Science Foundation of China (Nos. 21432008 and 81373256).
文摘The availability and reliability of strategies for molecular biosensing over a finely adjustable dynamic range is essential to enhance the understanding and control of vital biological process. To expand the versatility and utility of nucleic acid- related enzymes, we demonstrated a rational approach to acquiring tunable, pH-dependent deoxyribozymes (DNAzymes) with catalytic activities and response sensitivities that can be tuned through a simple change in solution pH. To do this, we capitalized upon the pH dependence of Hoogsteen interactions and designed i-motif- and triplex-based DNAzymes that can be finely regulated with high precision over a physiologically relevant pH interval. The modified DNAzymes are dependent upon pH for efficient cleavage of substrates, and their catalytic performance can be tuned by regulating the sequence of inserted i-motif/triplex structures. The principle of tunable, pH-dependent DNAzymes provides the opportunity to engineer pH-controlled DNA-machinery devices with unprecedented sensitivity to pH changes. For example, we constructed a DNA-walker device, the stepping rate of which could be adjusted by simply modulating solution pH within an interval of 5.6 to 7.4, as well as a DNA tetrahedron that can be opened at pH 6.4 and kept closed at pH 7.4. The potential of this approach is not limited to serve as pH-dependent devices, but rather may be combined with other elements to expand their practical usefulness.
基金supported by the JSPS Grant-in-Aid for Scientific Research on Innovative Areas“Mixed anion”(No.16H06439)Nippon Sheet Glass Foundation for Materials Science and Engineering and by the Dynamic Alliance for Open Innovations Bridging Human,Environment and Materials,the Cooperative Research Program of“Network Joint Research Center for Materials and Devices”。
文摘The pristine carbon nitride derived from the thermally-induced polymerization of nitrogen-containing precursors(e.g.cyanamide,dicyanamide,melamine and urea)displays low crystallinity because of the predominantly kinetic hindrance.Herein,we reported a modified molten-salts method to fabricate the crystalline carbon nitride under ambient pressure,which is expected to the large-scale production of crystalline carbon nitride.The obtained crystalline carbon nitride displayed about 3.0 times higher photocatalytic NO removal performance than that of pristine carbon nitride under visible light irradiation(λ<400 nm).Detailed experimental characterization and theoretical calculation revealed the crucial roles of crystallinity in crystalline carbon nitride for the enhanced photocatalytic NO removal performance.This research provided deep insights into the crystallinity of carbon nitride for the enhanced photocatalytic performance.
基金This research was supported by PetroChina Innovation Foundation(2009D-5006-04-02)the Fundamental Research Funds for the Central Universities and the Metallurgical Foundation of University of Science and Technology Beijing.
文摘A promising microalgal strain isolated from fresh water,which can grow both autotrophically on inorganic carbon under lighting and heterotrophically on organic carbon without lighting,was identified as Chlorella sp.USTB-01 with the phylogenetic analysis based on 18S ribosomal ribonucleic acid(rRNA)gene sequences.In the heterotrophic batch culture,more than 20.0 g·L^(-1)of cell dry weight concentration(DWC)of Chlorella sp.USTB-01 was obtained at day 5,and which was used directly to seed the autotrophic culture.A novel fermentor-helical combined photobioreactor was established and used to cultivate Chlorella sp.USTB-01 for the fixation of carbon dioxide(CO_(2)).It showed that the autotrophic growth of Chlorella sp.USTB-01 in the combined photobioreactor was more effective than that in the fermentor alone and the maximum DWC of 2.5 g·L^(-1)was obtained at day 6.The highest CO_(2)fixation of 95%appeared on day 1 in the exponential growth phases of Chlorella sp.USTB-01 and 49.8%protein was found in the harvested microalgal cells.