A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating condition...A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.展开更多
A deep learning based homogenization framework is proposed to link the microstructures of porous nickel/yttriastabilized zirconia anodes in solid oxide fuel cells(SOFCs)to their effective macroscopic properties.A vari...A deep learning based homogenization framework is proposed to link the microstructures of porous nickel/yttriastabilized zirconia anodes in solid oxide fuel cells(SOFCs)to their effective macroscopic properties.A variety of microstructures are generated by the discrete element method and the meso‑scale kinetic Monte Carlo method.Then,the finite element method and the homogenization theory are used to calculate the effective elastic modulus(E),Poisson’s ratio(υ),shear modulus(G)and coefficient of thermal expansion(CTE)of representative volume elements.In addition,the triple-phase boundary length density(LTPB)is also calculated.The convolutional neural network(CNN)based deep learning model is trained to find the potential relationship between the microstructures and the five effective macroscopic properties.The comparison between the ground truth and the predicted values of the new samples proves that the CNN model has an excellent predictive performance.This indicates that the CNN model could be used as an effective alternative to numerical simulations and homogenization because of its accurate and rapid prediction performance.Hence the deep learning-based homogenization framework could potentially accelerate the continuum modeling of SOFCs for microstructure optimization.展开更多
基金funding from the National Natural Science Foundation of China,China(12172104,52102226)the Shenzhen Science and Technology Innovation Commission,China(JCYJ20200109113439837)the Stable Supporting Fund of Shenzhen,China(GXWD2020123015542700320200728114835006)。
文摘A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.
基金This work was supported by the National Natural Science Foundation of China(Nos.11932005,12172104)the National Key R&D Program of China(No.2018YFB1502602)Shenzhen Science and Technology Innovation Commission(JCYJ20200109113439837).
文摘A deep learning based homogenization framework is proposed to link the microstructures of porous nickel/yttriastabilized zirconia anodes in solid oxide fuel cells(SOFCs)to their effective macroscopic properties.A variety of microstructures are generated by the discrete element method and the meso‑scale kinetic Monte Carlo method.Then,the finite element method and the homogenization theory are used to calculate the effective elastic modulus(E),Poisson’s ratio(υ),shear modulus(G)and coefficient of thermal expansion(CTE)of representative volume elements.In addition,the triple-phase boundary length density(LTPB)is also calculated.The convolutional neural network(CNN)based deep learning model is trained to find the potential relationship between the microstructures and the five effective macroscopic properties.The comparison between the ground truth and the predicted values of the new samples proves that the CNN model has an excellent predictive performance.This indicates that the CNN model could be used as an effective alternative to numerical simulations and homogenization because of its accurate and rapid prediction performance.Hence the deep learning-based homogenization framework could potentially accelerate the continuum modeling of SOFCs for microstructure optimization.