<div style="text-align:justify;"> Bearings are widely utilized as key components in industrial scenarios. Therefore, the automatic and precise inspection of bearing defects is imperative for the manufa...<div style="text-align:justify;"> Bearings are widely utilized as key components in industrial scenarios. Therefore, the automatic and precise inspection of bearing defects is imperative for the manufacturing of the bearing. In this paper, a novel defect detection method based on acoustics is proposed to further improve both the accuracy and the efficiency of the defection process. We firstly constructed a labeled dataset composed of acoustic signals sampling from different bearings with a certain rotational speed. OpenSMILE is adopted to extract the acoustic features and the target acoustic feature dataset with 6373 features is formed. To further improve the efficiency of the proposed method, a feature selection strategy based on the chi-square test is adopted to eliminate the most inefficient features. Several statistical learning models are constructed and trained as the classifier. Eventually, the performance of classifiers is evaluated and achieves relatively high accuracy and efficiency with an extremely imbalanced dataset. </div>展开更多
Combination of passive targeting with active targeting is a promising approach to improve the therapeutic efficacy of nanotherapy.However,most reported polymeric systems have sizes above100 nm,which limits effective e...Combination of passive targeting with active targeting is a promising approach to improve the therapeutic efficacy of nanotherapy.However,most reported polymeric systems have sizes above100 nm,which limits effective extravasation into tumors that are poorly vascularized and have dense stroma.This will,in turn,limit the overall effectiveness of the subsequent uptake by tumor cells via active targeting.In this study,we combined the passive targeting via ultra-small-sized gemcitabine(GEM)-based nanoparticles(NPs)with the active targeting provided by folic acid(FA)conjugation for enhanced dual targeted delivery to tumor cells and tumor-associated macrophages(TAMs).We developed an FAmodified prodrug carrier based on GEM(PGEM)to load doxorubicin(DOX),for co-delivery of GEM and DOX to tumors.The co-delivery system showed small particle size of~10 nm in diameter.The ligand-free and FA-targeted micelles showed comparable drug loading efficiency and a sustained DOX release profile.The FA-conjugated micelles effectively increased DOX uptake in cultured KB cancer cells that express a high level of folate receptor(FR),but no obvious increase was observed in 4T1.2 breast cancer cells that have a low-level expression of FR.Interestingly,in vivo,systemic delivery of FAPGEM/DOX led to enhanced accumulation of the NPs in tumor and drastic reduction of tumor growth in a murine 4T1.2 breast cancer model.Mechanistic study showed that 4T1.2 tumor grown in mice expressed a significantly higher level of FOLR2,which was selectively expressed on TAMs.Thus,targeting of TAM may also contribute to the improved in vivo targeted delivery and therapeutic efficacy.展开更多
Nitric oxide(NO) donors are versatile tools for nitric oxide biology. The biological response of NO is dependent on the transient concentration and the sustained duration. N-Nitrosated rhodamines are photo-triggered...Nitric oxide(NO) donors are versatile tools for nitric oxide biology. The biological response of NO is dependent on the transient concentration and the sustained duration. N-Nitrosated rhodamines are photo-triggered and photo-calibrated NO donors. We recently discovered that suppression of the dihedral angle between the N-nitroso fragment with the rhodamine scaffold facilitates NO release.Inspired by this discovery, we developed a fast-releasing NO donor (NOD575) suitable for biological applications, e.g., the pulmonary arterial smooth muscle cells(PASMCs).展开更多
文摘<div style="text-align:justify;"> Bearings are widely utilized as key components in industrial scenarios. Therefore, the automatic and precise inspection of bearing defects is imperative for the manufacturing of the bearing. In this paper, a novel defect detection method based on acoustics is proposed to further improve both the accuracy and the efficiency of the defection process. We firstly constructed a labeled dataset composed of acoustic signals sampling from different bearings with a certain rotational speed. OpenSMILE is adopted to extract the acoustic features and the target acoustic feature dataset with 6373 features is formed. To further improve the efficiency of the proposed method, a feature selection strategy based on the chi-square test is adopted to eliminate the most inefficient features. Several statistical learning models are constructed and trained as the classifier. Eventually, the performance of classifiers is evaluated and achieves relatively high accuracy and efficiency with an extremely imbalanced dataset. </div>
基金supported by National Institute of Health grants R01CA174305,R01CA219399,R01CA223788(Song Li,USA),R21CA249649(Jingjing Sun,USA)a grant from Shear Family Foundation(Song Li,USA)。
文摘Combination of passive targeting with active targeting is a promising approach to improve the therapeutic efficacy of nanotherapy.However,most reported polymeric systems have sizes above100 nm,which limits effective extravasation into tumors that are poorly vascularized and have dense stroma.This will,in turn,limit the overall effectiveness of the subsequent uptake by tumor cells via active targeting.In this study,we combined the passive targeting via ultra-small-sized gemcitabine(GEM)-based nanoparticles(NPs)with the active targeting provided by folic acid(FA)conjugation for enhanced dual targeted delivery to tumor cells and tumor-associated macrophages(TAMs).We developed an FAmodified prodrug carrier based on GEM(PGEM)to load doxorubicin(DOX),for co-delivery of GEM and DOX to tumors.The co-delivery system showed small particle size of~10 nm in diameter.The ligand-free and FA-targeted micelles showed comparable drug loading efficiency and a sustained DOX release profile.The FA-conjugated micelles effectively increased DOX uptake in cultured KB cancer cells that express a high level of folate receptor(FR),but no obvious increase was observed in 4T1.2 breast cancer cells that have a low-level expression of FR.Interestingly,in vivo,systemic delivery of FAPGEM/DOX led to enhanced accumulation of the NPs in tumor and drastic reduction of tumor growth in a murine 4T1.2 breast cancer model.Mechanistic study showed that 4T1.2 tumor grown in mice expressed a significantly higher level of FOLR2,which was selectively expressed on TAMs.Thus,targeting of TAM may also contribute to the improved in vivo targeted delivery and therapeutic efficacy.
基金financially supported by the National Natural Science Foundation of China (No. 21572061)the Fundamental Research Funds for the Central Universities (No. WY1516017)
文摘Nitric oxide(NO) donors are versatile tools for nitric oxide biology. The biological response of NO is dependent on the transient concentration and the sustained duration. N-Nitrosated rhodamines are photo-triggered and photo-calibrated NO donors. We recently discovered that suppression of the dihedral angle between the N-nitroso fragment with the rhodamine scaffold facilitates NO release.Inspired by this discovery, we developed a fast-releasing NO donor (NOD575) suitable for biological applications, e.g., the pulmonary arterial smooth muscle cells(PASMCs).