期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Formation of L1_(0)-FeNi hard magnetic material from FeNi-based amorphous alloys
1
作者 Yaocen Wang ziyan hao +3 位作者 Yan Zhang Xiaoyu Liang Xiaojun Bai Chongde Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期538-544,共7页
L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is f... L1_(0)-FeNi hard magnetic alloy with coercivity reaching 861 Oe was synthesized through annealing Fe_(42)Ni_(41.3)Si_8 B_(4)P_(4)Cu_(0.7)amorphous alloy,and the L1_(0)-FeNi formation mechanism has been studied.It is found the L1_(0)-FeNi in annealed samples at 400℃mainly originated from the residual amorphous phase during the second stage of crystallization which could take place over 600 C lower than the measured onset temperature of the second stage with a50 C/min heating rate.Annealing at 4000 C after fully crystallization still caused a slight increase of coercivity,which was probably contributed by the limited transformation from other high temperature crystalline phases towards L1_(0)phase,or the removal of B from L1_(0)lattice and improvement of the ordering quality of L1_(0)phase due to the reduced temperature from520℃to 400℃.The first stage of crystallization has hardly direct contribution to L1_(0)-FeNi formation.Ab initio simulations show that the addition of Si or Co in L1_(0)-FeNi has the effect of enhancing the thermal stability of L1_(0)phase without seriously deteriorating its magnetic hardness.The non-monotonic feature of direction dependent coercivity in ribbon segments resulted from the combination of domain wall pinning and demagnetization effects.The approaches of synthesizing L1_(0)-FeNi magnets by adding Si or Co and decreasing the onset crystallization temperature have been discussed in detail. 展开更多
关键词 L1_(0)-FeNi hard magnetic materials amorphous alloys ab initio simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部