Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs...Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability.展开更多
Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Her...Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries.展开更多
The polysulfide shuttling effect is the primary bottleneck restricting the industrial application of Li-S batteries,and the electrocatalytic sulfur reduction reaction(SRR)has emerged as an effective solution.Carbon-ba...The polysulfide shuttling effect is the primary bottleneck restricting the industrial application of Li-S batteries,and the electrocatalytic sulfur reduction reaction(SRR)has emerged as an effective solution.Carbon-based singleatom catalysts(SACs),which promotes SRR,show great potential in inhibiting the shuttling effect of polysulfides.Meanwhile,the optimization and rational design of such catalysts requires a deep understanding to the fundamental SRR mechanism and remains highly nontrivial.In this work,we construct a comprehensive database of carbon-based SACs,covering different coordination patterns,heteroatoms,and transition metals.The SRR activities are determined using density functional theory calculations,revealing a synergistic effect between the p orbital of the heteroatom and the d orbital of the transition metal.This interplay underscores the critical importance of the coordination environment for SRR under the ortho-P_(2)C_(2)structure.Regardless of the transition metal type,the ortho-P_(2)C_(2)coordination pattern significantly enhances the SRR performance of SACs,surpassing the widely reported N_(3)C_(1)and N_(4)coordinated graphene-based SACs.Furthermore,heteroatoms with ortho-P_(2)C_(2)may exhibit SRR activity.In a word,by using this comprehensive dataset and data-driven framework,we propose a promising novel class of coordination structure(ortho-P_(2)C_(2)structure)and neglected design principle.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51872157,52072208)Shenzhen Technical Plan Project(JCYJ20170817161753629)+1 种基金Fundamental Research Project of Shenzhen(No.JCYJ20190808153609561)Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111).
文摘Nickel-rich LiNi_(1-x-y)Co_(x)Mn_(y)O_(2)(NCM,1-x-y≥0.6)is known as a promising cathode material for lithium-ion batteries since its superiority of high voltage and large capacity.However,polycrystalline Ni-rich NCMs suffer from poor cycle stability,limiting its further application.Herein,single crystal and polycrystalline LiNi_(0.84)Co_(0.07)Mn_(0.09)O_(2)cathode materials are compared to figure out the relation of the morphology and the electrochemical storage performance.According to the Li^(+)diffusion coefficient,the lower capacity of single crystal samples is mainly ascribed to the limited Li+diffusion in the large bulk.In situ XRD illustrates that the polycrystalline and single crystal NCMs show a virtually identical manner and magnitude in lattice contraction and expansion during cycling.Also,the electrochemically active surface area(ECSA)measurement is employed in lithium-ion battery study for the first time,and these two cathodes show huge discrepancy in the ECSA after the initial cycle.These results suggest that the single crystal sample exhibits reduced cracking,surface side reaction,and Ni/Li mixing but suffers the lower Li^(+)diffusion kinetics.This work offers a view of how the morphology of Ni-rich NCM effects the electrochemical performance,which is instructive for developing a promising strategy to achieve good rate performance and excellent cycling stability.
基金supported by National Nature Science Foundation of China(No.51872157 and No.52072208)National Key R&D Program of China 2021YFA1202802Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N111)。
文摘Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries.
基金supported by the Scientific Research Start-up Funds of Tsinghua SIGS(QD2021018C to Peng L)the National Natural Science Foundation of China(20231710015 and 22209096 to Peng L)+2 种基金GuangDong Basic and Applied Basic Research Foundation(2023A1515010059 to Peng L)Shenzhen Fundamental Research Program(JCYJ20220530143003008 to Peng L)Shenzhen Science and Technology Program(ZDSYS20230626091100001)。
文摘The polysulfide shuttling effect is the primary bottleneck restricting the industrial application of Li-S batteries,and the electrocatalytic sulfur reduction reaction(SRR)has emerged as an effective solution.Carbon-based singleatom catalysts(SACs),which promotes SRR,show great potential in inhibiting the shuttling effect of polysulfides.Meanwhile,the optimization and rational design of such catalysts requires a deep understanding to the fundamental SRR mechanism and remains highly nontrivial.In this work,we construct a comprehensive database of carbon-based SACs,covering different coordination patterns,heteroatoms,and transition metals.The SRR activities are determined using density functional theory calculations,revealing a synergistic effect between the p orbital of the heteroatom and the d orbital of the transition metal.This interplay underscores the critical importance of the coordination environment for SRR under the ortho-P_(2)C_(2)structure.Regardless of the transition metal type,the ortho-P_(2)C_(2)coordination pattern significantly enhances the SRR performance of SACs,surpassing the widely reported N_(3)C_(1)and N_(4)coordinated graphene-based SACs.Furthermore,heteroatoms with ortho-P_(2)C_(2)may exhibit SRR activity.In a word,by using this comprehensive dataset and data-driven framework,we propose a promising novel class of coordination structure(ortho-P_(2)C_(2)structure)and neglected design principle.