期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multiphase-field simulation of austenite reversion in medium-Mn steels 被引量:2
1
作者 Yan Ma Rui Zheng +4 位作者 ziyuan gao Ulrich Krupp Hai-wen Luo Wenwen Song olfgang Bleck 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期847-853,共7页
Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility.This steel class is generally characterized by an ultrafine-... Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility.This steel class is generally characterized by an ultrafine-grained duplex microstructure consisting of ferrite and a large amount of austenite.Such a unique microstructure is processed by intercritical annealing,where austenite reversion occurs in a fine martensitic matrix.In the present study,austenite reversion in a medium-Mn alloy was simulated by the multiphase-field approach using the commercial software MICRESS®coupled with the thermodynamic database TCFE8 and the kinetic database MOBFE2.In particular,a faceted anisotropy model was incorporated to replicate the lamellar morphology of reversed austenite.The simulated microstructural morphology and phase transformation kinetics(indicated by the amount of phase)concurred well with experimental observations by scanning electron microscopy and in situ synchrotron high-energy X-ray diffraction,respectively. 展开更多
关键词 medium-Mn steels intercritical annealing austenite reversion phase-field simulation faceted anisotropy model
下载PDF
Enhanced Thermoelectric Transport Properties of La0.98Sr0.02CoO3-BiCuSeO Composite 被引量:1
2
作者 Muhammad Umer Farooq ziyuan gao +7 位作者 Sajid Butt Kewei gao Xiaolu Pang Hidayat Ullah Shah Hasnain Mehdi Jafri Asif Mahmod Xigui Sun Nasir Mahmood 《Journal of Electrical Engineering》 2016年第2期52-57,共6页
We report a facile method to enhance the thermoelectric efficiency of La0.98Sr0.02CoO3-BiCuSeO by introducing BiCuSeO as a secondary phase with ultra-low thermal conductivity. Inclusion of secondary phase results in r... We report a facile method to enhance the thermoelectric efficiency of La0.98Sr0.02CoO3-BiCuSeO by introducing BiCuSeO as a secondary phase with ultra-low thermal conductivity. Inclusion of secondary phase results in reducing the total thermal conductivity by suppressing the lattice and electronic thermal conductivities and also contributes to enhancement in the Seebeck coefficient. The wide grain size distribution of Laog^Sro02CoO3-BiCuSeO composite facilitates in breaking the interlinked transport properties through increased scattering of different wavelength phonons. The combined effect of enhanced Seebeck coefficient and ultra-low thermal conductivity, results in an improved ZT value of 0.07 at 923 K. The proposed strategy can be opted for improvement in the thermoelectric efficiency of other thermoelectric materials as well. 展开更多
关键词 La0.98Sr0.02CoO3-BiCuSeO COMPOSITE thermal conductivity ZT.
下载PDF
Zirconium metal organic cages:From phosphate selective sensing to derivate forming 被引量:2
3
作者 ziyuan gao Jia Jia +2 位作者 Wentong Fan Tong Liao Xingfeng Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第9期4415-4420,共6页
Luminescent metal organic cages(MOCs)have attracted great interest as a unique class of sensing substrates.In this work,intrinsically fluorescent Zr-MOCs were successfully used as fluorescent probes for the sensitive ... Luminescent metal organic cages(MOCs)have attracted great interest as a unique class of sensing substrates.In this work,intrinsically fluorescent Zr-MOCs were successfully used as fluorescent probes for the sensitive and selective detection of phosphate anions in water and real samples.When the ligand and Zr ion clusters form a cage,the intrinsic fluorescence of the ligand was tuned from high to weak emission due to the ligand-to-metal charge transfer(LMCT)effect,and this weakened fluorescence can be restored by the addition of phosphate.The degree of fluorescence enhancement is positively correlated with the added phosphate concentration,and the efficacy of this strategy is demonstrated by a linear phosphate detection range of 5–500µmol/L and a detection limit of 1.06µmol/L.We discuss the interaction between phosphate and Zr in scattering spectrum and MS,respectively.In comparison to phosphate adsorption on Zr-metal organic frameworks(MOFs),where phosphate connects different numbers of cages,both blocking the LMCT effect and causing the cages to aggregate.We also found that the phosphate displaces the ligand from the cage when the phosphate concentration is further expanded,resulting in the formation of new derivatives.This derivative was shown to be useful as a Lewis acid catalyst and as a rare earth ion adsorbent. 展开更多
关键词 Zirconium metal organic cage Phosphate sensing Derivant forming Fluorescence enhancement Mass spectrometry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部