期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Knowledge-based Convolutional Neural Networks for Transformer Protection 被引量:1
1
作者 zongbo li Zaibin Jiao Anyang He 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第2期270-278,共9页
Deep learning based transformer protection has attracted increasing attention.However,its poor generalization abilities hinder the application of deep learning in the power system owing to the limited training samples... Deep learning based transformer protection has attracted increasing attention.However,its poor generalization abilities hinder the application of deep learning in the power system owing to the limited training samples.In order to improve its generalization abilities,this paper proposes a knowledge-based convolutional neural network(CNN)for the transformer protection.In general,the power experts can reliably discriminate between faulty transformers and healthy transformers only through the unsaturated parts of equivalent magnetization curve(voltage of magnetizing branch-differential current curve)but deep learning intends to focus on the combined features of saturated and unsaturated parts.Inspired by the identification process of power experts,CNN adopted a specially designed loss function in this paper which is used to identify the running states of power transformers.Specifically,the presented Restrictive Weight Sparsity substitutes a special regularization term for the common LI regularization.The presented Adaptive Sample Weight Adjustment endows the softmax loss of each sample with the optimizable weight the softmax loss of each sample with the optimizable weights to increase the impact of more-difficult-to-identify cases on the training process.With the modified loss function,the knowledge is abstractly introduced into the training process of CNN so as to successfully imitate the identification process of power experts.Accordingly,the proposed knowledge-based CNN will pay more attention to the unsaturated parts of equivalent magnetization curve even if only limited samples are included in the training process.The results of simulations and dynamic model experiments reveal that the knowledge-based CNN exhibits an improved generalization ability and the knowledge-based deep learning algorithm is a promising research direction. 展开更多
关键词 Convolutional neural network equivalent magnetization curve generalization ability knowledge transformer protection
原文传递
A denoising-classification neural network for power transformer protection 被引量:2
2
作者 zongbo li Zaibin Jiao +1 位作者 Anyang He Nuo Xu 《Protection and Control of Modern Power Systems》 2022年第1期801-814,共14页
Artificial intelligence(AI)can potentially improve the reliability of transformer protection by fusing multiple features.However,owing to the data scarcity of inrush current and internal fault,the existing methods fac... Artificial intelligence(AI)can potentially improve the reliability of transformer protection by fusing multiple features.However,owing to the data scarcity of inrush current and internal fault,the existing methods face the problem of poor generalizability.In this paper,a denoising-classification neural network(DCNN)is proposed,one which inte-grates a convolutional auto-encoder(CAE)and a convolutional neural network(CNN),and is used to develop a reli-able transformer protection scheme by identifying the exciting voltage-differential current curve(VICur).In the DCNN,CAE shares its encoder part with the CNN,where the CNN combines the encoder and a classifier.Based on the inter-action of the CAE reconstruction process and the CNN classification process,the CAE regards the saturated features of the VICur as noise and removes them accurately.Consequently,it guides CNN to focus on the unsaturated features of the VICur.The unsaturated part of the VICur approximates an ellipse,and this significantly differentiates between a healthy and faulty transformer.Therefore,the unsaturated features extracted by the CNN help to decrease the data ergodicity requirement of AI and improve the generalizability.Finally,a CNN which is trained well by the DCNN is used to develop a protection scheme.PSCAD simulations and dynamic model experiments verify its superior performance. 展开更多
关键词 Transformer protection Exciting voltage-differential current curve Convolutional auto-encoder Convolutional neural network Denoising-classification neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部