期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin,Qinghai Province,China 被引量:9
1
作者 Er-yong Zhang Dong-guang Wen +39 位作者 Gui-ling Wang Wei-de Yan Wen-shi Wang cheng-ming Ye Xu-feng Li Huang Wang Xian-chun Tang Wei Weng Kuan Li Chong-yuan Zhang Ming-xing Liang Hong-bao Luo Han-yue Hu Wei Zhang Sen-qi Zhang Xian-peng Jin Hai-dong Wu Lin-you Zhang Qing-da Feng Jing-yu Xie Dan Wang Yun-chao He Yue-wei Wang zu-bin chen Zheng-pu cheng Wei-feng Luo Yi Yang Hao Zhang En-lai Zha Yu-lie Gong Yu Zheng Chang-sheng Jiang Sheng-sheng Zhang Xue Niu Hui Zhang Li-sha Hu Gui-lin Zhu Wen-hao Xu Zhao-xuan Niu Li Yang 《China Geology》 CAS 2022年第3期372-382,共11页
Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to... Hot dry rock(HDR)is a kind of clean energy with significant potential.Since the 1970s,the United States,Japan,France,Australia,and other countries have attempted to conduct several HDR development research projects to extract thermal energy by breaking through key technologies.However,up to now,the development of HDR is still in the research,development,and demonstration stage.An HDR exploration borehole(with 236℃ at a depth of 3705 m)was drilled into Triassic granite in the Gonghe Basin in northwest China in 2017.Subsequently,China Geological Survey(CGS)launched the HDR resources exploration and production demonstration project in 2019.After three years of efforts,a sequence of significant technological breakthroughs have been made,including the genetic model of deep heat sources,directional drilling and well completion in high-temperature hard rock,large-scale reservoir stimulation,reservoir characterization,and productivity evaluation,reservoir connectivity and flow circulation,efficient thermoelectric conversion,monitoring,and geological risk assessment,etc.Then the whole-process technological system for HDR exploration and production has been preliminarily established accordingly.The first power generation test was completed in November 2021.The results of this project will provide scientific support for HDR development and utilization in the future. 展开更多
关键词 Hot dry rock Directional drilling Reservoir stimulation Microseismic monitoring Organic Rankine cycle(ORC) Power generation test Energy geological survey engineering Gonghe Basin Qinghai Province China
下载PDF
Velocity calibration for microseismic event location using surface data 被引量:6
2
作者 Hai-Yu Jiang zu-bin chen +2 位作者 Xiao-Xian Zeng Hao Lv Xin Liu 《Petroleum Science》 SCIE CAS CSCD 2016年第2期225-236,共12页
Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monit... Because surface-based monitoring of hydraulic fracturing is not restricted by borehole geometry or the difficulties in maintaining subsurface equipment, it is becoming an increasingly common part of microseismic monitoring. The ability to determine an accurate velocity model for the monitored area directly affects the accuracy of microseismic event locations. However, velocity model calibration for location with surface instruments is difficult for several reasons: well log measurements are often inaccurate or incomplete, yielding intractable models; ori- gin times of perforation shots are not always accurate; and the non-uniqueness of velocity models obtained by inver- sion becomes especially problematic when only perforation shots are used. In this paper, we propose a new approach to overcome these limitations. We establish an initial velocity model from well logging data, and then use the root mean square (RMS) error of double-difference arrival times as a proxy measure for the misfit between the well log velocity model and the true velocity structure of the medium. Double-difference RMS errors are reduced by using a very fast simulated annealing for model perturbance, and a sample set of double-difference RMS errors is then selec- ted to determine an empirical threshold. This threshold value is set near the minimum RMS of the selected samples, and an appropriate number of travel times within the threshold range are chosen. The corresponding velocity models are then used to relocate the perforation-shot. We use the velocity model with the smallest relative location errors as the basis for microseismic location. Numerical analysis with exact input velocity models shows that although large differences exist between the calculated and true velocity models, perforation shots can still be located to their actual positions with the proposed technique; the location inaccuracy of the perforation is 〈2 m. Further tests on field data demonstrate the validity of this technique. 展开更多
关键词 Velocity calibration Microseismicmonitoring Double-difference RMS error Very fastsimulated annealing Perforation-shot relocation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部